
Sheridan College Sheridan College

SOURCE: Sheridan Institutional Repository SOURCE: Sheridan Institutional Repository

Faculty Publications and Scholarship School of Applied Computing

2015

Context-Aware Mobile Apps using iBeacons: Towards Smarter Context-Aware Mobile Apps using iBeacons: Towards Smarter

Interactions Interactions

Edward R. Sykes
Sheridan College, ed.sykes@sheridancollege.ca

Stephen Pentland
Sheridan College, stephen.pentland@sheridancollege.ca

Saverio Nardi
Sheridan College

Follow this and additional works at: https://source.sheridancollege.ca/fast_appl_publ

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you

SOURCE Citation SOURCE Citation
Sykes, Edward R.; Pentland, Stephen; and Nardi, Saverio, "Context-Aware Mobile Apps using iBeacons:
Towards Smarter Interactions" (2015). Faculty Publications and Scholarship. 3.
https://source.sheridancollege.ca/fast_appl_publ/3

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
This Article is brought to you for free and open access by the School of Applied Computing at SOURCE: Sheridan
Institutional Repository. It has been accepted for inclusion in Faculty Publications and Scholarship by an authorized
administrator of SOURCE: Sheridan Institutional Repository. For more information, please contact
source@sheridancollege.ca.

https://source.sheridancollege.ca/
https://source.sheridancollege.ca/fast_appl_publ
https://source.sheridancollege.ca/fast_appl
https://source.sheridancollege.ca/fast_appl_publ?utm_source=source.sheridancollege.ca%2Ffast_appl_publ%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=source.sheridancollege.ca%2Ffast_appl_publ%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.google.com/forms/d/e/1FAIpQLSf7q5WZp0i0L8SWABAz3ZpRCipBkE5zHDR2o3dFhtHvN8DaXA/viewform
https://source.sheridancollege.ca/fast_appl_publ/3?utm_source=source.sheridancollege.ca%2Ffast_appl_publ%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:source@sheridancollege.ca

Context-Aware Mobile Apps using iBeacons: Towards
Smarter Interactions

Edward R Sykes
Sheridan College

1430 Trafalgar Road
Oakville, Ontario, Canada

+1 (905) 845 9430 Ext 2490
ed.sykes@sheridancollege.ca

Stephen Pentland
Sheridan College

1430 Trafalgar Road
Oakville, Ontario, Canada

+1 (905) 845 9430
stephen.pentland

Saverio Nardi
Sheridan College

1430 Trafalgar Road
Oakville, Ontario, Canada

+1 (905) 845 9430
saverio.nardi

ABSTRACT
In this paper we describe four mobile apps for iOS devices that
use Bluetooth Low Energy iBeacons to provide contextual
relevance and personalized experiences for the user. The
applications span a number of vertical markets including asset
tracking, food transportation logistics and health care. We
developed these apps in collaboration with an industry partner
located in Mississauga, Ontario, Canada. In this paper we present
the relevant background of work in this area, the architectural
framework that we designed and developed to support these
context-aware apps, the apps themselves, and report on the
findings of real use test case scenarios.

Categories and Subject Descriptors
C.5.3 [Microcomputers]: Portable devices—personal digital
assistants (e.g., smartphones). H.1.2 [User/Machine Systems]:
Human Factors – smart interactions, Bluetooth Low Energy
Beacons. H.5.2 [User Interfaces]: User-centered design.
J.0 [Computer Applications]: Mobile application design and
development. J.3 [Life and Medical Sciences]: Health, Medical
information systems.

General Terms
Experimentation, Human Factors.

Keywords
Smart interactions; context-aware computing; beacons; BLE
mobile apps; mobile computing; ubiquitous computing.

1. INTRODUCTION
Location awareness is the heart of virtually all context-aware
mobile apps [1, 2]. Although GPS technologies have enabled
rough estimates of a person’s location, unfortunately, it does not
provide the accuracy required for context-aware in indoor
environments [3]. This is especially true in large multi-level
buildings such as retail, hospital and educational
environments [4].

The new trend of Internet of Things (IoT) theorizes that things
(i.e., objects) and people will connect wirelessly. Bluetooth Low
Energy (BLE), or Bluetooth Smart, is enabling the explosion of an
incredible array of devices [5]. In fact, it is predicted that by 2020

30 billion devices will enter into the IoT ecosystem according to
ABI Research [6]. Analysts from all over the world recognize
BLE as a key enabler in the Internet of Things [2]. The key to
beacons is in fact this Bluetooth Low Energy communication
specification.

The motivation behind this work is to shed light on the following
research questions: (1) determine a good architectural model for
context-aware mobile apps that leverage iBeacons, and
(2) determine the strengths and limitations of iBeacons for
context-awareness by designing and developing several
prototypes for real-world settings. In this paper, four iOS
applications are presented that were designed and developed using
iBeacons. The applications span a number of vertical markets
including asset tracking, food transportation logistics and health
care. We present the architecture that was designed and developed
to support this ubiquitous computing framework, and report on
the findings of real test use cases. This paper is structured as
follows: section 2 presents a background review of similar work
in this area, section 3 discusses our initial experiences with
iBeacons prior to designing and developing our apps, section 4
presents a high-level description of the apps, section 5 presents
the architectural model that we created, section 6 discusses the
particulars of the apps, section 7 presents findings and discussion
and section 8 provides the conclusion and discusses future work.

2. BACKGROUND
Bluetooth Low Energy became part of the Bluetooth standard in
2010 with Bluetooth Core Specification 4.0 [7]. BLE enables a
mobile device to use Bluetooth networking at lower energy levels
in an effort to reduce smartphone battery consumption.

In 2013, Apple introduced the iBeacon standard that enables new
location awareness possibilities for apps. Leveraging Bluetooth
Low Energy, a device, such as a smartphone or tablet with
iBeacon technology can be used to establish a region around an
object (e.g., shoe in a shoe store). This allows a device to
determine when it has entered or left the region, along with an
estimation of proximity to a beacon.

The application of beacons has been significant to a variety of
markets and its growth is poised to accelerate within the next 5
years [5, 6]. From welcoming and assisting sports fans to their
seats in a soccer stadium to providing interesting facts about a
nearby museum exhibit, iBeacons provide a gateway to a world of
new possibilities for location awareness and smart interactions
between devices and iBeacon hardware.

Beacons that are compatible with the iBeacon standard will work
with devices that have Bluetooth 4.0—currently these are virtually

Copyright © 2015 Edward R Sykes, Stephen Pentland, Saverio Nardi.
Permission to copy is hereby granted provided the original copyright
notice is reproduced in copies made.

120

all Apple and Android devices (iOS 7.0+, OS X 10.9+, Android
4.3+), collectively representing 96.3% of the current smartphone
OS market share worldwide [3, 8].

Implementations of the iBeacon standard advertise the following
information via BLE: the Universally Unique Identifier (UUID),
major and minor values [9, 10]. Collectively, the UUID, major
and minor values provide the identifying information for a
beacon. The information is hierarchical in nature with the major
and minor fields permitting subdivision of the identity established
by the UUID (please refer to Table 1).

For example, consider a national-wide retail store. The UUID
would be shared by all locations. This allows a device to use a
single identifier to recognize any of the stores with a single
region. Each specific store in San Francisco, New York and
Boston would be assigned a unique major value, allowing a
device to identify which specific store it is in. Within each
individual store, departments would be assigned unique minor
values. In this way, app developers can customize the user
experience based on context-aware information provided by
beacons.

Table 1. iBeacon advertisement information via BLE

Field Size Description

UUID 16 bytes Specific to the app and deployment use
case.

Major 2 bytes

Specifies a specific iBeacon and use
case. For example, this could define a
sub-region within a larger region
defined by the UUID. (e.g., 1=San
Francisco, 2=New York, 3=Boston).

Minor 2 bytes

Further subdivision of region or use
case, specified by the application
developer (e.g., 10=Sporting Goods,
20=Automotive, 30=Housewares).

At the onset of this research, we recognized that there are only a
few hardware companies that build iBeacon compliant beacons.
We surveyed the market for products based on the following
critieria: (1) availability, (2) price, (3) well-designed and
supported SDK, (4) ease of use and configuration and (5) no
extraneous continuous fee for services. We evaluated the
following implementations of iBeacons using this criteria:
Pixie [11], Bleu Station Beacon Series 100 [12], Estimote [13],
Roximity [14] and Gimbal [15]. The results are shown in Table 2.
During the review and evaluation process, it became clear that the
Estimote beacons were the most feasible since they provided the

Table 2. Evaluation of various iBeacon products

Criteria Pixie Bleu Estimote Roximity Gimbal

Availability

Price
Well designed /
supported SDK —

Ease of use /
configurable

no extraneous
services

Legend: : acceptable, : good, : very good, : poor,
: very poor, —: Not applicable.
greatest potential to satisfy the requirements of the proposed
research. Furthermore, Estimote above all the others has gained

significant popularity because of its indoor location SDK and
support commitment for applications developers.

2.1 Estimote Beacons and Nearables
Estimote offers two distinct products that satisfy the iBeacon
specification: Beacons and Nearables (also referred to as
Stickers). Both comply with the iBeacon standard but also provide
additional information beyond this standard. Table 3 presents the
prominent characteristics of Estimote beacons and nearables.
Nearables offer additional information including orientation,
temperature and motion. Collectively, this provides more
opportunities for personalization of location-aware and context-
aware apps [2, 16, 17].

Table 3. Estimote’s Beacons and Nearables Characteristics
Characteristic Beacons Nearables

UUID
Major + Minor

Type of Nearable
Received Signal

Strength Indication

Orientation in space
Temperature

Motion in x,y, and z
 Legend: : supported, : unsupported.

3. INITIAL TESTING WITH iBEACONS
We set out initially conducting a variety of real-world tests to
determine the strengths and limitations of Estimote beacons and
nearables. We set up an indoor test room where 4 beacons were
positioned. We erected 4 lightweight panels, with each one
opposite one other in a rectangular configuration. Each panel then
had a single beacon placed in the center of the crossbar on each
panel. This configuration allowed easy modification of the size
and configuration of the testing area. We were able to test
functionality such as region entry and exit events, ranging
accuracy and position reading. Please see Figure 1.

Figure 1. Test site: An indoor room equipped with iBeacons.

We initially focused on location / proximity of a device from a
beacon since this is its cornerstone functionality. We later

121

explored the other characteristics (orientation, temperature,
motion). The way in which signals from a beacon are detected
influences the design of a mobile app in terms of the user
experience. When a device detects a beacon’s signal, it uses the
strength of the signal Received Signal Strength Indication (RSSI)
to determine both proximity to the beacon, as well as the accuracy
of its estimation of proximity. The stronger the signal, the more
confident the device will be about the proximity.

Estimote beacons can be configured and modified easily. This
facilitated rich experimentation of accuracy determination under a
variety of indoor conditions such as, configuring walls and
obstacles that would interfere with the signals, varying the
frequency of beacon advertisements, varying the transmission
power and, of course, the location of beacons relative to the
receiving device. Table 3 presents the prominent findings from
our experimentation under good conditions (i.e., iOS device had
line-of-sight to the beacon and as few as possible obstructions in
the vicinity). We discovered that the RSSI value tended to
fluctuate significantly partially attributed to external factors such
as absorption, interference, reflections (i.e., multi-path fading) or
diffraction [18]. We also discovered that our measurements were
quite different than Estimote’s reported specifications for their
nearables [13, 16].

Table 4. Estimote’s Nearables: RSSI, distance classification,
and actual distance from empirical measurements.

RSSI
range (deviation)

Distance
Classification

(Zone)

Actual Distance
range (deviation)

-60 to -75 dBm
(10dBm) Immediate 0-2.5cm (2.5cm)

-75 to -85 dBm
(10dBm) Near 2.5-15cm (10cm)

-85 to -100 dBm
(10dBm) Far 15cm-7m (30cm)

Legend: Distance Classification (“Zones” according to Estimote):
“immediate”, “near” and “far.” [13]

We also investigated the energy consumption of mobile devices
running apps that use iBeacons. Studies have shown that energy
consumption is dependent on the BLE chipsets in the mobile
device and is also directly proportional to the number of iBeacons
the device is currently scanning [19]. Furthermore, energy
consumption is also dependent on the sampling rate (i.e., the rate
at which the beacon’s advertised signals are received by the app
on the mobile device). For instance, the output rate for Estimote
nearables is 1Hz to 5kHz and the sampling rate within the app can
be set from 950ms to 10s. Using a 950ms sampling rate consumes
the most battery power. Collectively, these findings and
experiences helped guide us in the design and development of the
architectural model and context-aware apps in this project.

4. HIGH LEVEL DESCRIPTION OF APPS
4.1 Asset Tracking App
The purpose of this application was to track assets for end-users.
The user's iOS device calculates its position in relation to the
tracked asset (identified by the iBeacon). When the asset is
outside of the device's range, a notification triggers on the device
alerting the user. If the user does not take steps to relocate the
asset to a closer proximity, additional notifications are issued. Our
application applies this functionality to the logistics industry. A

nearable is attached to a set of keys and our application on the
iOS device frequently computes the distance between the two.
When the keys fall outside of a preprogrammed range,
notifications appear on the iPod. As long as the device remains
outside of the range, notifications continue to appear. This system
can better protect a company's assets and increase asset retention.

4.2 Food Transportation App
The initial motivation for this application was to explore the
possibilities of using BLE technology combined with connected
mobile devices to offer low-cost temperature monitoring for food
delivery vehicles. By using the existing mobile device provided to
the delivery driver, and one or more low-cost iBeacon products
capable of reporting ambient air temperature, this solution could
possibly result in a solution that was not only cheaper, but also
more configurable and modular than many current solutions [2, 5,
13].

In this solution, the iBeacon devices would, at regular intervals,
broadcast their identifying information and the current ambient
temperature of the space it is currently deployed in (e.g.,
refrigerated section of a food truck). The driver’s device would
take and process these readings to analyze if any particular
reading either fell below or rose above the acceptable range.

4.3 Mobility Assistance App
The purpose of the mobility assistance app is to provide support
for persons requiring a mobility assistant device (e.g., wheelchair,
walker, etc.). Using a Bluetooth Smart device with contextual
awareness, a Mobile Assistant (MA) device would know when it
was in a position other than upright. An alert would be provided
to the user on a device (e.g. smartphone, tablet, iPod, etc.) if the
MA device were in an undesirable position. The application
notifies the proper authority after a preprogrammed period of time
if the user does not interact with the alert. The Bluetooth Smart
device has an accelerometer included with it allowing it to know
its current position in three-dimensional space. The software
enumerates each of the 6 possible orientations (i.e., on its
front/back, on its legs/head, on its right/left side). This enables
specific positions of the device to be communicated in the form of
an alert to the user. Our application specifically uses the example
of a wheelchair using an iOS device. Any incidents where the
wheelchair is not in an upright, normal position causes an alert to
be issued to the user and gives him/her a set amount of time to
respond before dialing the proper authority. Our application also
sends any incidents to a database for future analytics or
management within a central care facility.

4.4 Home Healthcare App
The goal of this app is to explore how best to support a homecare
professional while performing routine healthcare activies with the
patient in his/her home. Patient locations and lists of medical
equipment that should be present at that location are registered on
a back-end server. The application uses readings obtained from
the nearable to determine if the items are indeed present and to
present tasks for the homecare practitioner to perform.

Each patient has a master beacon assigned to him/her and the
identifier for that particular beacon maps back to a set of data
corresponding to that patient’s name1. This master beacon also

1 Estimote nearable identifiers can take on one of the following values: Dog, Car,
Fridge, Bag, Bike, Chair, Bed, Door, Shoe or Generic.

122

enables a list to be generated for both the particular health care
items that are supposed to be present at this location and the tasks
that must be done by the health care provider. In the list of
equipment, each piece is again mapped to a particular beacon
identifier value. This means that as the practitioner enters the
location, the device can read the surrounding nearable and check
that all required items are in fact present at the location.

Using this system, we can provide a way to reduce human error in
health care. This implementation provides a way for a health care
worker to have patient information that is always up to date and
ensures that the information that the practitioner is working with
belongs to the proper individual.

5. Architectural Model
This section presents the architectural model that was designed
and developed for this suite of context-aware apps.

Our systems were comprised of 4 general parts (please refer to
Figure 2):

1. The server, which was shared among all concept apps

2. The client (i.e., context-aware mobile app)

3. The database

4. The iBeacons (Estimote beacons or nearables)

Figure 2. High-level architectural model.

Each app was designed to read location context information from
surrounding iBeacon devices and combine it with the current state
of the environment around them. When the conditions fell into
specified ranges, the apps would then communicate with the back-
end server to record the exceptional state (temperature out of
range, devices not present, at a patient’s home, etc.).

The applications used HTTP POST and GET requests to transmit
or receive data from the server. POST requests were sent using the
x-www-form-urlencoded format, and all server responses were
sent in JavaScript Object Notation (JSON) format [20]. We chose
to use JSON for multiple reasons; JSON:

• is an open standard for data-interchange

• is easy for humans to read and write

• is easy for machines to parse and generate

• enables flexibility and ease in designing our document
structure for data required in our mobile apps

Upon receipt of data from one of the client applications, the
server, which was written using Python 3 and Flask 0.10.1 would
parse the incoming information and store it in a SQLite database
file [21-23]. In the other direction, a client app would make a
GET request to a particular URL endpoint and the server would

get the appropriate data from the SQLite instance and convert it to
JSON format for easy consumption by the client.

When designing the initial prototype, we took inspiration from the
RESTful design [24]. This can be observed in the way the GET
endpoints are structured. We used this to provide a simple
interface for our client applications to retrieve data from the server
and provide new data for future consumption.

Another feature of the server is to host multiple simple web pages
with map data to demonstrate the relative ease with which such a
system could collect and present data that, prior to BLE and
connected devices, required specialized and complex eqipment
such as GPS and temperature sensors from multiple vehicles in a
fleet, or when a patient’s wheelchair had fallen over.

5.1 Server Characteristics
The core responsibilities for the server are:

• Provide HTTP endpoints for client communication

• Accept properly formatted POST requests

• Return properly formatted JSON data for correct GET
requests

• Offer a mechanism to display the stored data

• Store all received data in a persistent format

• Provide robost scalablity

The server component was built on commonly used technologies
such as Linux, Nginx, Python and SQLite. These technologies
inherently provide the desired characteristics, particularly
robustness and scalability. The server scales to meet the number
of mobile devices that are currently asking for data related to a
particular beacon.
The client, on the other hand, must handle the possibility of
reading multiple beacons simultaneously. While Apple’s iBeacon
standard is equipped to handle this, there is the potential for
increased battery usage. Informal testing has shown that there can
be a moderate increase in battery usage, ranging from one or two
percent to over ten percent excess drain [19]. This is always
dependent on the individual device and scanning interval [19].

5.2 Client Characteristics
The client characteristics presented below are required for the
architecture designed (please refer to Figure 2). These client-side
properties are common amongst all of the context-aware apps
created in this project:

• Establish and maintain a data connection

• Properly create and send HTTP requests, either GET or
POST

• Provide access to a Bluetooth radio capable of
implementing the BLE standard

• Include the capacity to read information from BLE
iBeacon items and process contextual data in relation to
its desired operation

Collectively, these properties represent a cohesive foundation
upon which the context-aware apps designed and developed are
based. The diagram in Figure 2 shows the features that all of the
applications share. The mobile device receives contextual data
from multiple beacons that are in the proximity of the device.

123

Using this data, the device can process the input and communicate
over the internet to the back end server. At this point the server
can process the incoming request and provide an appropriate
response for the client.

6. DESIGN CHARACTERISTICS
This section discusses in depth the design and key characteristics
of the apps created.

6.1 Asset Tracking App
The objective of this application is to provide notifications to
drivers through their iOS device when they are too far from their
keys to their vehicle.

Keys for delivery vehicles include a BLE device with a
universally unique identifier. Our application executes on a
driver’s iOS device. When the application is opened it attempts to
find the driver’s keys as shown in Figure 3. Once the keys are
located by the application (see Figure 4), the application can be
placed in the background.

Figure 3. Key Loss App – Ranging (searching)

Figure 4. Key Loss App – within range of keys

The application continues running in the background, monitoring
for the key’s location approximately once-per-second. As long as
the keys remain within the short range threshold, based on the
RSSI from the BLE device, the application will simply continue
to monitor.

When the keys become located too far from the driver’s iOS
device, the application icon changes (see Figure 5) and an internal
timer begins to count down.

If the application cannot register the key’s BLE device again
within a predefined time, the driver receives an alert on their iOS
device (see Figure 6). Notifications will continue to occur at
regular pre-determined intervals if the keys are not retrieved.

This application can be easily repurposed to a number of different
scenarios where asset tracking is needed (e.g., dogs, cats, purses,
wallets, etc.). Furthermore, information such as GPS location and
time of day can be sent back to the asset owner, thus informing
him/her of the situation and allowing him/her to analyze precisely
where and when the asset was left behind.

Figure 5. Key Loss App – Ranging

Figure 6. Key Loss App – Notification Centre message

124

6.2 Food Transportation App
The goal of this application was to examine the feasability of
incorporating BLE devices combined with mobile devices to offer
reliable, low-cost temperature monitoring integration.

The layout for the system was to place one or more BLE devices
into the refrigerated compartment of a food delivery truck. The
other end of the system involves a mobile device that most
delivery drivers would already have. On a schedule of
approximately once-per-second, each beacon would transmit its
current temperature data to the mobile device.

Using the transmitted temperature data, the mobile device could
analyze the readings and, if one were outside the specified range,
an alert was issued to the driver and also to the back-end server
system.

One of the proposed uses for this type of system was to have the
mobile device transmit GPS data to the server during a food-
temperature emergency. This would allow the company operating
the system to determine if it were possible to complete the day’s
deliveries or whether the truck would have to come in for service
immediately. Please refer to Figure 7 for a demonstration of the
in-app alert.

Figure 7. Food transportation app – in-app alert

When a reading that is outside the desired range is observed, the
application notifies the driver that an anomaly has been observed
with the readings and states the deviation of the temperature. At
the same time, a POST request is sent to the server. In our
demonstration, the request contains data on the temperature
reading, and the current location of the vehicle as observed via
GPS location request. Please refer to Table 5 for a general view of
the data transmitted presented in an HTML table.

This context-aware app shows how, with nearables, a modest
amount of work and inexpensive hardware, temperature
monitoring can be added to a fleet of vehicles for a food
transportation company that will enable logistics via mobile
devices data transmitted by the beacons to optimize their
management and transportation of food goods.

Table 5. Food Transportation Central Reporting Web Page.

6.3 Mobility Assistance App
The motivation for this application is to illustrate through
continuous monitoring for individuals requiring a wheelchair,
their safety can be dramatically increased. Current solutions for
individuals that require emergency assistance also require physical
input. An example is the medical alert pendants with buttons to be
pressed in emergency situations. Our application attempts to solve
the problem of an individual being required to press a button or
through voice activation, trigger the appropriate response.
A BLE device is attached to an individual’s wheelchair that is in a
normal upright position. The BLE device’s current orientation is
registered as normal in our application running on an iOS device.
The application monitors the BLE device’s orientation and motion
(see Figure 8) on the wheelchair once-per-second.

Figure 8. Wheelchair App – (wheelchair in motion)

As long as the wheelchair is in a normal upright position (see
Figure 9) the application continues to monitor the BLE device’s
context.

125

Figure 9. Wheelchair App – (wheelchair in normal position)

When the wheelchair is in a non-upright position, the application
registers the BLE device’s incorrect orientation. The image in our
application changes to match the orientation of the BLE device,
turns red (see Figure 10) and a short internal timer begins. The
timer is used to account for a potential incorrect reading or
accidental incorrect wheelchair position (e.g., when the
wheelchair is being stowed away in a car for instance).

Figure 10. Wheelchair App–wheelchair has fallen on its right

If the wheelchair position is not righted, an alert appears
requesting input from the individual, similar to the emergency
pendant (see Figure 11). If the individual feels they are okay, they
inform the application by pressing the correct response to the alert
and the application begins monitoring again. However, if the user
is able to interact with the alert, but feels they require assistance
or the user is unable to interact with the alert, the application will
dial the local emergency services (see Figure 12).

Figure 11. Wheelchair App – Detected Wheelchair Problem.

Figure 12. Wheelchair App – (detected Wheelchair Problem --
Alerting Emergency services)

Each incident is also reported to a database. Our application sends
the date, time and incorrect orientation of the wheelchair to the
database for future analysis and reporting.
While our application is applicable only to a wheelchair, it could
be used for multiple scenarios. We considered the possibility of
fully replacing the pendants so the individual could have peace of
mind knowing that in an emergency scenario where they were
unable to physically press a button, emergency responders would
be notified.
A final consideration is a large health center or retirement
community (i.e., Center) could provide similar applications to
their residents. Staff could be alerted 24 hours a day of an incident
with any resident. The application could also register and use BLE
devices mounted on hallways and rooms to provide coordinates to

126

the Center’s staff allowing responders to know exactly where to
find the resident.
Each BLE device’s UUID, major and minor could be mapped to
specific rooms, hallways and residents in the Center. When an
incident occurs, the iOS device would send all ranged BLE device
UUIDs to staff.

6.4 Home Healthcare App
When creating the home healthcare application, our goal was to
examine ways to mitigate a potentially dangerous problem in
home healthcare scenarios—human error. When dealing with
potentially life-threating conditions, or when handling medication
tasks, it is easy to imagine the potential impact that human error
could have.

The design of this system leverages both the universally unique
identifier and limited range of the beacons to simulate the
scenario of a home healthcare worker arriving at a patient’s
residence. Once the worker’s mobile device is within range of a
beacon that is transmitting, a GET request is sent to the server
containing the UUID value of the beacon that was just
encountered.

Should a match be found on the server that corresponds to the
provided identifier, then a JSON formatted response is returned to
the client. In our current example, the response consists of the
following elements:

1. The patient’s name

2. A list of all medical items that should be present at the
patient’s residence

3. Checklist of tasks to be performed by the healthcare
provider when attending to the patient

Each item in a particular location is mapped to a UUID for a
different beacon that would be attached to the device itself. As the
surroundings are scanned, each individual beacon is read, and the
corresponding item is marked as present on the list view. During
each scan interval, the beacon details are read and iterated through
to determine which items are in the vacinity of the mobile device.

This allows for real-time updates as to whether all items are
present, and provides the practitioner easy access to information
about equipment that is missing without having to resort to
guesswork or intense searching.

Additionally, this method removes the possible implications of the
practitioner failing to account for an expensive piece of
equipment, ordering or bringing a new unit to the patient’s home
at a later time. It can also serve as a reminder for equipment
checks that could have otherwise been overlooked when the
practitioner is busy or trying to get their duties done in as efficient
manner as possible.

As the UUID for each attached nearable is read, the status of the
device is changed to indicate that it is present. During scanning,
should a particular piece of equipment no longer be within the
scanning proximity of the device, its status will revert to not being
present. Figure 13 depicts the user interface during scanning.

At any time during or after the scanning, the healthcare
practitioner may transition to the Tasks tab. This view presents a
table containing all of the individual tasks that should be
completed while the practitioner is on the premises. For easier
tracking, each task may be deleted from the list presented on the
device. This deletion has no effect on the original list that resides

on the server. Please refer to Figure 14 for more detail on how this
looks to the practitioner.

Figure 13. Home Healthcare App, Item checklist.

Figure 14. Home Healthcare App, Task list.

The data regarding the patient’s items and tasks are transmitted
from the server in JSON format, with an array of objects map each
item to a given UUID value. Tasks are also included in the same
fashion, with a simple array of string values denoting each
individual task that should be completed. The only other
information that is transmitted is the patient’s name. Please refer
to Figure 15 for the layout of the transmitted information.

127

Figure 15. Home Healthcare App, sample data.

7. FINDINGS AND DISCUSSION
This section presents the findings from our research. We found
the strengths of the Estimote beacons and nearables were:

• Beacons are more accurate for indoor positioning than
wireless access points. They achieve a margin of error
of approximately 2 meters, whereas access points are
greater than 10 meters [5, 25].

• iBeacons offer a low energy alternative to traditional
GPS and provide accurate indoor positioning.

• iBeacons provide contextual information including
identification, orientation, temperature and motion.

• iBeacons range well within a 50 meter radius in perfect
conditions, however absorption, interference or
diffraction from external objects affects them
negatively, and in some situations renders them
unusable [7, 16, 25].

• While optimized for one-to-one connections, beacons
can handle one-to-many connections as well [11].

We found the following weaknesses with the Estimote beacons
and nearables:

• Signal strength is prone to fluctuate depending on its
environment, negatively impacting proximity accuracy.

• Beacons can only broadcast and will not allow for
private communication.

• Packet size for communication is small at 27 bytes,
however communication bursts can occur every 3ms,
depending on the configuration specified.

• Current nearable hardware is prone to failure.

• Battery life is negatively affected by beacon settings that
provide greater accuracy (increased power transmission

and frequencies dramatically affects battery
consumption).

There is also a caveat regarding the indoor positioning when
compared to conventional GPS outdoor positioning. While GPS is
focused on fixing a specific location on the Earth’s surface,
iBeacon contextual awareness is very different. It is up to the
developer of the application to determine what a particular context
means when read. Generally, it is of greater importance to know
the proximity of the user and device to a particular location than
the actual global position.

Our experimentation with both the Estimote beacons and
nearables revealed that plug-and-play application in real use case
scenarios (e.g., retail store, hospital or education institution, etc.)
is unlikely. Settings for both of Estimote’s products require
broadcast timing and signal strength adjustment to provide more
accurate interaction with the iOS device.

The Software Development Kit (SDK) from Estimote also has
some problems. Contrary to the documentation, we found that
ranging for any beacons and nearables did not work with our iPod
devices. This includes Estimote’s own example applications. We
created our own ranging algorithms instead which identified
specific beacons or nearables. That is, we discovered that if we
ranged on a particular type of nearable (e.g., car, or dog for
instance), it would fail. As a result, we resorted to specifying the
precise hardcoded identifier for the nearable instead. This
approach proved to be much more reliable.

In our test office environment (see Figure 1) we experienced some
interference and reflection of signals that caused our applications
to incorrectly locate the iOS device in the room. Adjusting the
signal strength helped to alleviate this problem.

We found that beacons and nearables work best in open spaces
and large rooms where reflection and interference is minimal. We
experimented in a large public space and found the beacons and
nearables were able to range quite accurately.

We experimented with the speed our applications and iPod
devices took to find beacons and nearables. A regular walking
pace allowed our application to find these iBeacons. However,
when a user runs by an iBeacon, the application will fail to
recognize that the iBeacon was passed. As a result of our
experimentation we wouldn’t recommend the current technology
for speeds greater than typical walking pace.

We did not experiment with many devices attempting to interact
with a single beacon or nearable at a time, although this is
possible in the specification.

Estimote nearables offer a wider range of application than their
counterpart beacons as they include better context awareness. The
nearables also add the benefit of providing their current
orientation (e.g., face up/down, etc.), raw x, y, and z accelerometer
readings (for motion detection) and ambient temperature readings
all available up to 100ms refresh rates.

8. CONCLUSIONS AND FUTURE WORK
In this paper we presented four context-aware mobile apps that
use Bluetooth Low Energy iBeacons to provide contextual
relevance and personalized experiences for the user. The
applications span a number of vertical markets including asset
tracking, food transportation logistics and health care. In this
paper we presented the current state of the art in this area in terms

128

of off-the-shelf iBeacons and SDKs available, the architectural
framework that we designed and developed, and the context-
aware apps created. Lastly, we discussed our findings from real
test case scenarios and included the strengths and limitations of
the iBeacons in our context-aware apps.

8.1 Future Work
The next phase of this research is already in progress.
Recognizing that there are many beacons available in the market,
we are currently testing a variety of different implementations of
iBeacons, namely, Pixie, Roximity, Gimbal and Kontakt [26]. We
plan on testing these beacons from different vendors individually
and in combination to determine strengths and limitations. We
believe these experiences will be useful to share in future reports.
We are also in the planning stages to conduct a comprehensive
usability study of the mobile apps involving real participants. For
example, we plan on working with food delivery companies and
truck drivers for the asset tracking app and the food transportation
logistics app. We are also in discussions with homecare facilities
and practitioners to determine how to test and evaluate the health
care app in real use case scenarios. A Research Ethics Board
application is in progress and we are planning on continuing the
research and development in collaboration with the industry
partner.

9. ACKNOWLEDGMENTS
Our thanks to the Natural Sciences and Engineering Research
Council of Canada (NSERC), Canada's federal funding agency for
university based research, http://www.nserc-
crsng.gc.ca/index_eng.asp for funding this research under the
Engage granting program.

10. REFERENCES
[1] Weiser, M. 1991. The Computer for the 21st Century.

Scientific American, pp. 94–104.
[2] Perkins, E. 2015. The Identity of Things for the Internet of

Things, Retrieved from:
https://www.gartner.com/doc/2975217.

[3] Carmody, B. 2015. Beacons: Get to the Point, Retrieved June
14, 2015 from:
http://www.trepoint.com/whitepaper/Beacons-
GetToThePoint/.

[4] Gissiner, B. 2015. Beacons In Hospitals - Adding value to
patients and Staff, Retrieved June 14, 2015 from:
https://www.linkedin.com/pulse/beacons-hospitals-adding-
value-patients-staff-bryan-gissiner.

[5] Ashton, K. 2014. That 'Internet of Things' Thing. RFID
Journal.

[6] Cooney, P. 2013. More Than 30 Billion Devices Will
Wirelessly Connect to the Internet of Everything in 2020,
Retrieved from: https://www.abiresearch.com/press/more-
than-30-billion-devices-will-wirelessly-conne/.

[7] Bluetooth. 2015. Bluetooth Smart Technology: Powering the
Internet of Things, Retrieved May 2, 2015 from:
http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx.

[8] IDC. 2015. International Data Corporation (IDC) Worldwide
Quarterly Mobile Phone Tracker, Retrieved from:
http://www.idc.com/prodserv/smartphone-os-market-
share.jsp.

[9] Apple. 2014. Getting Started with iBeacons, Retrieved from:
https://developer.apple.com/ibeacon/Getting-Started-with-
iBeacon.pdf.

[10] Newman, N. 2014. Apple iBeacon technology briefing.
Journal of Direct, Data and Digital Marketing Practice, vol.
15, pp. 222-225.

[11] Pixie. 2015. Pixie – Location of Things Platform Retrieved
May 23, 2015 from: https://pixie-production-jarome.netdna-
ssl.com/wp-content/uploads/2015/01/Pixie-Location-of-
Things-Platform-Introduction.pdf.

[12] Twocanoes. 2015. Bleu Station Beacons, Retrieved June 12,
2015 from: http://twocanoes.com/bleu.

[13] Estimote. 2015. Estimote: Real-world context for your apps,
Retrieved Feb 2, 2015 from: http://estimote.com.

[14] Roximity. 2015. Roximity, Retrieved April 2, 2015 from:
http://roximity.com.

[15] Gimbal. 2015. Retrieved May 22, 2015 from:
http://www.gimbal.com.

[16] Etherington, D. 2014. Estimote Wants To Pioneer
‘Nearables’ With New Stickers Beacon Hardware.
TechCrunch.

[17] Stawecki, M. 2015. The state of iBeacons, Retrieved June
14, 2015 from:
https://stawecki.wordpress.com/2015/06/11/the-state-of-
ibeacons-june-
2015/?utm_campaign=iOS%2BDev%2BWeekly&utm_medi
um=rss&utm_source=iOS_Dev_Weekly_Issue_203.

[18] Rappaport, T. 2001. Wireless communications: principles
and practice: Prentice Hall.

[19] Aislelabs. 2014. iBeacon Battery Drain on Apple vs
Android: A Technical Report, Retrieved July 20, 2015 from:
http://www.aislelabs.com/reports/ibeacon-battery-drain-
iphones/.

[20] JSON. 2015. Introducing JSON, Retrieved June 1, 2015
from: http://json.org.

[21] Miller, B., and Ranum, D. 2014. How to Think Like a
Computer Scientist: Learning with Python: Interactive
Edition 2.0, Retrieved March 20, 2015 from:
http://interactivepython.org/courselib/static/thinkcspy/index.
html.

[22] Ronacher, A. 2015. Flask: web development, one drop at a
time, Retrieved May 1, 2015 from:
http://flask.pocoo.org/docs/0.10/.

[23] SQLite. 2015. SQLite, Retrieved April 10, 2015 from:
https://www.sqlite.org.

[24] IBM. 2015. RESTful Web services: The basics, Retrieved
Feb 21, 2015 from:
http://www.ibm.com/developerworks/library/ws-restful/.

[25] Apple. 2015. iBeacons for Developers, Retrieved Feb 24,
2015 from: https://developer.apple.com/ibeacon/.

[26] Aislelabs. 2015. The Hitchhikers Guide to iBeacon
Hardware: A Comprehensive Report by Aislelabs, Retrieved
August 1, 2015 from:
http://www.aislelabs.com/reports/beacon-guide/.

129

	Context-Aware Mobile Apps using iBeacons: Towards Smarter Interactions
	SOURCE Citation

	tmp.1460664973.pdf.pS1_s

