
Sheridan College Sheridan College

SOURCE: Sheridan Institutional Repository SOURCE: Sheridan Institutional Repository

Faculty Publications and Scholarship School of Applied Computing

2006

Qualitative Evaluation of the Java Intelligent Tutoring System Qualitative Evaluation of the Java Intelligent Tutoring System

Edward R. Sykes
Sheridan College, ed.sykes@sheridancollege.ca

Follow this and additional works at: https://source.sheridancollege.ca/fast_appl_publ

 Part of the Computer Sciences Commons

SOURCE Citation SOURCE Citation
Sykes, Edward R., "Qualitative Evaluation of the Java Intelligent Tutoring System" (2006). Faculty
Publications and Scholarship. 6.
https://source.sheridancollege.ca/fast_appl_publ/6

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
This Article is brought to you for free and open access by the School of Applied Computing at SOURCE: Sheridan
Institutional Repository. It has been accepted for inclusion in Faculty Publications and Scholarship by an authorized
administrator of SOURCE: Sheridan Institutional Repository. For more information, please contact
source@sheridancollege.ca.

https://source.sheridancollege.ca/
https://source.sheridancollege.ca/fast_appl_publ
https://source.sheridancollege.ca/fast_appl
https://source.sheridancollege.ca/fast_appl_publ?utm_source=source.sheridancollege.ca%2Ffast_appl_publ%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=source.sheridancollege.ca%2Ffast_appl_publ%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://source.sheridancollege.ca/fast_appl_publ/6?utm_source=source.sheridancollege.ca%2Ffast_appl_publ%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:source@sheridancollege.ca

Qualitative Evaluation of

the Java Intelligent Tutoring System

Edward R. Sykes
School of Applied Computing and Engineering Sciences, Sheridan College

1430 Trafalgar Road, Oakville, Ont., Canada, L6H 2L1

ABSTRACT

In an effort to support the growing trend of the Java programming
language and to promote web-based personalized education, the
Java Intelligent Tutoring System (JITS) was designed and
developed. This tutoring system is unique in a number of ways.
Most Intelligent Tutoring Systems require the teacher to author
problems with corresponding solutions. JITS, on the other hand,
requires the teacher to only supply the problem and problem
specification. JITS is designed to “intelligently” examine the
student’s submitted code and determines appropriate feedback
based on a number of factors such as JITS’ cognitive model of the
student, the student’s skill level, and problem details. JITS is
intended to be used by beginner programming students in their first
year of College or University. This paper discusses the important
aspects of the design and development of JITS, the qualitative
methods and procedures, and findings. Research was conducted at
the Sheridan Institute of Technology and Advanced Learning,
Ontario, Canada.

Keywords: Web-Based Education, Evaluation of Programming
Tutors, Intelligent Tutoring Systems, e-learning systems, AI in
Education.

1. INTRODUCTION

Online teaching tools such as WebCT and Blackboard are
becoming extremely popular for distance education and
mainstream in-class education. Entire colleges and universities
have implemented online teaching tools as the central mechanism
for delivering all of their courses [1]. The strength of these tools is
their ability to provide the teacher and student with a great deal of
versatility within the learning environment. Unfortunately, they
do not provide a means by which a student may receive ongoing
personalized instruction. Teaching students on a one-to-one basis
significantly influences the degree of knowledge and skill retained
by the student; Bloom suggests that one-to-one tutoring is the most
effective strategy known, generally yielding two standard
deviations better performance than traditional instruction. He
suggests further that mastery learning approaches one-to-one
instruction in terms of measured learner gains [2].
 This highlights the crisis in the educational community. In
order for students to reach their potential, they need individual
tutoring. However, due to a plethora of factors such as the
limitations of online teaching tools, financial considerations, and
sheer logistics, each student cannot be granted access to a
personalized human tutor for a consistent duration of time. After
all, traditionally there is only one teacher in a classroom of
students. So, what can be done to solve this problem? One
solution is to design and implement Intelligent Tutoring Systems

(ITS). A generally accepted definition for an ITS is a system that
employs artificial intelligence methods to assist trainees to
improve their problem solving skills by monitoring their
reasoning, tracking errors to their source, and, based on the
diagnosis, providing advice and assistance to strengthen problem
solving skills [3]. ITS allows for more open-ended problems [3].
 This paper presents an overview of the design and
development of the Java Intelligent Tutoring System, the research
methods used, and the findings. These findings include student
and faculty perspectives of those who used this ITS.

2. JITS DESIGN THEORY

The design of JITS primarily followed the ACT-R Cognitive
Theory for Developing Tutors. The first principle derived from
ACT-R (Architecture of Cognitive Tutors) is that it is essential to
define the target cognitive model as a set of production rules [4,
5]. Production rules are a set of IF–THEN–ELSE constructs
which outline discrete knowledge components which collectively
represent the steps required for a student to reach a solution for a
problem. A typical ITS may have several hundred production
rules to effectively cover the domain and various states a student
may be in within a realm of feasibility and predictability.
Heffernan and Koedinger (2001) reinforce this principle: “Without
this [principle] one does not have a well-defined educational goal”
[6]. In other words, in the context of ACT-R, tutoring is assuring
students (a) construct the production rules, (b) practice the
production rules, and (c) remediate the errors in the production
rules. Additionally, it is a goal of the Intelligent Tutoring System
to guide the student towards a solution. However, it is not
mandatory that the solution be achieved by the student. In other
words, the ITS recognizes that the student may become frustrated
and not wish to continue. The ITS records the current state of the
student’s progress, noting the degree of learning that has taken
place even though a solution may not have been achieved.
 The second principle concerns how these production rules are
to be communicated to the student [4]. According to ACT-R
theory, one cannot directly tell students the underlying rules [4, 7].
 The goal for ITS is to provide a vehicle by which students
construct knowledge for themselves as opposed to having the
information told to them [8]. ITS need to communicate the
production rules to students by providing them with examples that
illustrate the rules. As a result, the most effective way for students
to construct knowledge is to acquire these rules as a by-product of
problem-solving. This form of experiential learning is an effective
way for students to construct knowledge and increase their
cognitive abilities [9].
 The third principle of ACT-R theory is that one wants to
maximize the rate at which students have opportunities to form and
practice these production rules [4]. Based on other research by
ITS researchers, it was shown that what predicts students’ final

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 5 49ISSN: 1690-4524

achievement is how much practice they have had of these rules and
not how that practice occurs [5, 10]. Associated with the concept
that “practice makes perfect” is the corollary to minimize
floundering which is incorporated into many leading-edge
Intelligent Tutoring Systems. The basic idea is to reduce student
frustration during the problem-solving session and select problems
that offer practice on those production rules where students most
need practice [10]. A production rule in the ACT-R theory is a
statement of a particular contingency that controls behaviour in the
Intelligent Tutoring System. The following are two examples of
production rules:

Example 1:

IF the goal is to classify a person
 AND he is unmarried
THEN classify him as a bachelor

Example 2:

IF the goal is to add two digits d1 and d2 in
 a column
 AND d1 + d2 = d3
THEN
 write d3 in the column

 A production rule is a condition-action pair. The condition
specifies a pattern of input symbols that must be present for the
production rule to execute. The action section specifies the action
that is to take place. A typical ITS may have hundreds of
production rules to encapsulate the knowledge of the domain of
instruction. For the design of the Java Intelligent Tutoring System,
the set of production rules is represented by the grammar of the
Java language coupled with custom production rules augmented to
the grammar.
 The fourth principle of ACT-R cognitive theory for tutoring
deals with how to treat errors in student problem solving [4].
Anderson et al. base this principle on an earlier work in 1990,
which states, “people learn best when they generate the answer for
themselves rather than are told” [11]. However, the consequence
of letting people generate their own knowledge is that errors are
inevitable. Fortunately, there are four considerations outlined in
ACT-R theory that deal with error remediation [4]. First, many
errors do not reflect misunderstandings or lack of knowledge;
rather the errors are simply unintentional slips. The second
consideration is that people learn best when they construct the
knowledge themselves. This is analogous to hands-on training as
opposed to lecture-based teaching. The third consideration is that
a lot of time can be wasted when the student is floundering while
trying to solve a problem. This state is called an error state and is
not beneficial for learning. The fourth consideration is that when
students have problems with their knowledge, it is more effective
to provide another opportunity to learn the correct production.
Since the student does not need a deep appreciation of their error,
it is not effective for the ITS to expound on it [12].

The ACT-R Theory for the development of tutors has led to a
standard framework for the design and construction of Intelligent
Tutoring Systems. The goal of this framework is to ensure that
Intelligent Tutoring Systems will provide rich learning
environments for students that will support their cognitive
development in the specific domain of study in as effective means
as possible.

Many researchers in the area of ITS support the following
steps to design and construct an Intelligent Tutoring System.

1. construct the interface;
2. define the production rules;
3. create the declarative instruction; and
4. set up the Instructional Agent to manage the curriculum

and engage the student through rich-interaction [4, 11, 12].

 During the design of the Java Intelligent Tutoring System,
these steps were performed but in a slightly different order than
presented above. Due to the complexities involved with the way
in which JITS is designed, a massive amount of effort was spent
on step 2, that is, defining the production rules. This is because
JITS was designed to recognize any small Java program and offer
“intelligent” feedback when there is no authored solution
available. In other words, unlike other Intelligent Tutoring
Systems, there is no predetermined solution for each problem. As
a result, the focus of this step in the project was on compiler error
correction strategies which used extensive production rules in the
form of Backus-Naur Form (BNF) for the grammar of the Java
language. Once this was completed, the next step the researcher
pursued was Step 3.
 Once the production rules were in place and validated, the
declarative instruction became the focus of the researcher.
Declarative instruction was designed and implemented by a series
of tutorial web pages with ease of navigation and quick reference
of paramount design consideration. More information regarding
this step is presented in the following sections.
 In step 4 of the ACT-R theory recommendation, a prototype
for the Instructional Agent including a hint generation module was
designed and developed. Small curriculum modules were also
created to test the interaction between user and the ITS prototype.
After extensive testing of the prototype system, the last step for
design and development was the construction of the User Interface
(Step 1). Please see the corresponding section for more detail
regarding the design and implementation of the Java Intelligent
Tutoring System User Interface.

3. ERROR CORRECTION AS A DESIGN ASPECT

JITS is designed to provide extensive hands-on practice for
students learning Java in the form of attempting to solve
programming problems. All entry-level programming students
make syntax mistakes and logic errors. Thus, a module that
sophisticatedly determines the intent of the student and can
identify various types of errors that students make is a necessary
component for an ITS for the Java programming language.
 While text correction is commonplace in word processors,
mobile phones, etc., it is not commonplace in the area of
compiling a computer program. When a person writes a program
in any language, it must precisely follow the syntax and grammar
rules of that language. Any mistake, even so minute as forgetting
a “;” will cause the program to fail compilation. This research
proposes an intriguing new use in teaching programming by
autocorrecting typical mistakes that beginner programming
students make. From a pedagogic/didactic perspective, support for
the beginner programmer when these types of errors occur can be
very helpful. Thus an error correction algorithm would be very
helpful for students. Reviews from the learning and teaching
science journals yields this to be true [9, 13]. As a result, the Java
Error Correction Algorithm fits in this chosen theory.
Furthermore, based on the principles of the ACT-R cognitive
theory for developing tutors, the Java Error Correction Algorithm
also coincides with this philosophy [11, 14].

50 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 5 ISSN: 1690-4524

4. JAVA ERROR CORRECTION ALGORITHM DESIGN

This section describes the design of the Java Error Correction
Algorithm (JECA). The design arose from research involving
decision trees, expert systems, and compiler tools [15]. It became
clear after preliminary research that JavaCC provided the best
features for the development of an error correction algorithm [16].
 JECA is designed to consider three distinct cases:
CASE 1: student enters perfect code and it compiles and runs;
CASE 2: student enters code that needs modification but with

JECA changes will compile and run; and
CASE 3: student enters code that needs modification but will

not compile regardless of all corrections employed by
JECA; however, suggestions are presented to the
student to bring the code to a closer state for
compilation.

 The Java Intelligent Tutoring System’s intelligence is
accomplished by this embedded logic module (i.e., the Java
Error Correction Algorithm). This module performs a number of
operations behind the scenes. It implements a sophisticated
scanner and parser that autocorrects the student’s code when
appropriate as well as generates a number of parse trees that
have small permutations. This module then attempts to compile
the best trees to ascertain the most likely path the student
“intended” to follow. With this knowledge, JITS can efficiently
and effectively tutor the student. The goals JECA are to:
1. analyze the student’s code submission;
2. intelligently recognize the “intent” of the student;
3. “auto-correct” where appropriate (e.g., converting “While”

into the keyword “while,” “forr” into “for,” etc.);
4. learn individual student’s misconceptions, and categorize

the types of errors s/he makes;
5. produce a “modified code” that will compile (or bring the

code closer to a state of successful compilation); and
6. prompt the student programmer for information when

necessary via well-defined hint support structures.

 JECA, combined with a well-defined student modeling
mechanism and dynamic hint generation capabilities, enables
JITS to significantly improve the performance of beginner Java
programmers. The algorithm used by JECA is presented below.

1. Create a copy of the student’s submission (i.e.,

“modified_source”).
2. The scanner examines the student’s code and attempts to

extract a token. Let S be the stream of characters to be
validated as a token.

3. A validation process ensues in which comparisons are done
using the reserved words and keywords of Java (Table 1),
extended keywords (Table 2), and previously declared
identifiers.

4. For a given identifier, if the scanner discovers, within a
certain threshold, that S can undergo transformations to
convert S into a valid token (i.e., a reserved word or keyword,
an extended keyword, or as a previously defined identifier),
then it will do so. However, if the scanner determines that S
is sufficiently different from all of the items previously
compared to, then it will be left unchanged (i.e., it will
remain as a new identifier).

5. Update the modified_source code to reflect these changes and
the newly constructed token is submitted to the parser.

6. Repeat 1 through 4 until all input from the student’s source
code has been processed and the parser has completed the

construction of the parse tree representing the
modified_source code.

7. Try to parse and compile the modified_source code. If the
compilation succeeds, then relay the modifications performed
to the student in order for them to correct their code and stop
processing.

8. If the previous step fails, then extract information regarding
why it failed and set up a competition of permutated parse
trees containing insertions, deletions, and replacements at the
problem area.

9. Run these permutated trees through the parser. The goal of
this stage is to determine if the specific problem where the
parse failed has been corrected.

10. Select the “best tree(s)” and compile these. The “best tree” is
defined as the tree that allowed the parser to successfully
consume the largest number of tokens compared to the other
trees in the competition.

11. If one or more of these trees successfully compiles, then
present this information to the user, indicating the changes
made to the student’s source code.

12. If none of the trees successfully compile then present the
information to the student regarding the selection of the best
tree.

13. Let the student respond/make corrections to the source code.
14. Repeat the process from 1 to 13.

 The algorithm employed by JECA is presented in flowchart
form in Figure 1 and Figure 2.

Table 1. Java Reserved Words and Keywords

abstract else interface super
boolean extends long switch
break false a native synchronized
byte final new this
case finally null a throw
catch float package throws
char for private transient
class goto b protected true a
const b if public try
continue implements return void
default import short volatile
do instanceof static while
double int strictfp c

Note. a true, false, and null are reserved words.
bindicates a keyword that is not currently used. cindicates a
keyword that was added for Java 2

Table 2. Extended Java Reserved Words and Keywords

Boolean
Character
Number
Byte
Double
Float
Integer
Long
Short
String
StringBuffer

Note. This list is a subset of the objects defined in java.lang.*

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 5 51ISSN: 1690-4524

Student’s source
code

Scanner
(java grammar)

yes

no Pass to parser
“keyword” token

Perform check against
extended keywords

Does it still
look like an
identifier?

2

1

identifier token
is found

Perform check against
java keywords

yes

no Pass to parser
the correct token

Perform check against
previously declared identifiers

Does it still
look like an
identifier?

yes

no Pass to parser
“identifier” token

Pass to parser the identifier
token

Does it look
like a unique

identifier?

Update
modifed_source

code

2

Update
modified_source

code

Create a copy
(modified_source)

2
Update

modifed_source
code

2
Update

modifed_source
code

Figure 1. First Component of JECA – Scanner Correction
Activities.

5. JAVA INTELLIGENT TUTORING SYSTEM DESIGN

AND ARCHITECTURE

The design of the Java Intelligent Tutoring System heavily relied
on JECA to provide the necessary information in order to offer
suitable feedback to the student programmer. However, there were
a number of factors that were considered in the design of JITS
beyond what JECA offered. The two main perspectives that were
considered in the design of JITS were both the student and the
instructor perspectives. In order for an ITS to be successful in
today’s e-learning society, JITS was designed with the following
qualities.

Student Perspective
The following qualities were deemed important in the design to
satisfy students and were part of the desired list of criteria in the
design of JITS:

Modified source
code

no

yes
Relay appropriate

message to student (i.e.,
identifier correction(s))

Run it through parser

Succeed? 1

2

Succeed?

Try to compile
modified code

Setup a competition of
permutated parse trees
containing insertions/

deletions/replacements

yes

no

Run them through parser

Succeed? no

yes

Select the “best trees”

Compile the
“best trees”

Relay appropriate
message to student (i.e.,

grammar correction)

1

Relay appropriate
message to student (i.e.,

all corrections made to the
“best trees”)

1

Relay appropriate
message to student (i.e.,
identifier correction(s))

1

Figure 2. Second Component of JECA – Parser Correction
Activities.

1. provide an easily understood, student-friendly user interface

that provides all the necessary features for effective ITS
tutoring;

2. provide access via an ordinary browser;
3. will not need a high-speed internet connection (i.e., dial-up

connection will work fine; thus, students in remote locations
have full access to this resource);

4. process student’s code submission and respond quickly to the
student;

5. support many students concurrently working with the ITS;
6. engage the student by communicating in a clear and concise

personalized fashion (e.g., unique hints and error messages
for each student);

7. track student performance in a database (e.g., ORACLE); and
8. model the user as s/he works through a problem.

52 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 5 ISSN: 1690-4524

Instructor Perspective
The design of JITS also considered the instructor perspective.
The following factors were important in meeting the needs of
teachers using this ITS.
1. requires the author of the problem to provide minimal

information (e.g., problem statement, program requirements,
and required output);

2. the author of the problem does *not* specify any solutions
(this is based on the premise that for a given programming
problem there may in fact be numerous solutions);

3. JITS must be able to recognize a very large number of
possible solutions for a particular programming problem;

4. student performance information should be easily accessible;
5. an instructor-friendly, web-based user interface to author

problems (i.e., Authoring Tool).

 This section includes the JITS User Interface, the JITS
Authoring Tool, and a description of the web-based infrastructure
architecture.

6. JITS USER INTERFACE

The JITS User Interface (UI) is comprised of a number of
interrelated modules: the main programming IDE, the tutorial
window, and the image viewer. JITS also includes support for
professors to create and manage problems via the JITS authoring
tool. Figure 3 depicts the current version of the JITS user
interface.
 The first section (i.e., label 1) presents a personalized
welcome to the student logged in.

Figure 3. Main screen of the JITS User Interface.

Label 2 presents a note relative to the current state of solving the
problem at hand. In this section, notes are dynamically created
by JITS that are personalized to each student. Label 3 presents
the problem template structure including the problem statement,
the problem specifications, and the required output. This
section also draws reference to the problem number out of the
total number of problems available in this programming topic.
At the end of Section 3, a link (i.e., label 4) is provided to a
picture if the problem has a visual component (i.e., an equation
or relevant drawing) to assist the student in more clearly
understanding the problem (see Figure 4). If the student clicks
the link, the picture is shown in a separate window to allow the
student to refer to the picture while at the same time working
with the main JITS user interface. Label 5 shows the template
provided by JITS for each problem in the system. Label 6
presents the editing region where the student types his/her
solution. Label 7 depicts the various buttons which the students
use to interact with JITS. Buttons include “Submit” to submit a
solution to a problem and to receive feedback. “View Top
Hint” and “View All Hints” buttons are the means by which
students can see the hints the JITS provides. The “View
Solution” button provides potentially various solutions to the
current problem. The “Previous Problem” and “Next Problem”
buttons are used for navigating within a problem set. The “My
Performance” button yields detailed information about the
student’s performance including problems solved, problems
attempted, the number of attempts for each problem, and
comparison information to the “average” JITS student.

1

2

3

4

5

6

7

8

10

11

9

12

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 5 53ISSN: 1690-4524

Figure 4. JITS Image Viewer depicting the image for the
current problem (popup from the JITS User Interface).

The tutorial window may be viewed at the same time as the
student is working with the main JITS user interface (i.e., the
tutorial may be referenced while working on a problem in JITS).
See Figure 5 for the Tutorial Window.
 Links are provided in the “My Performance” output for rapid
access to any problem the students wishes to retry (see Figure 6).
Label 8 shows where the majority of the responses from JITS are
presented. Information such as hints, solutions, performance
scores, and errors are all shown in this area of JITS. Label 9
presents the choices of the various programming topics that the
student may choose. The “Take Me There” button is used to bring
the student to the selected programming topic.
 Label 10 presents the “View the Tutorial” button, which
launches the JITS Tutorial window.

Figure 5. JITS Tutorial window displaying a sample tutorial
from the list of Programming Topics.

 Label 11 shows the “Help Me” button, which opens a
separate window displaying the screenshot of JITS with labels to
all of the components in JITS. The purpose of this window is to
orient new users of JITS so that they feel supported and can
more quickly become productive in this Intelligent Tutoring
System. (See Figure 7 for the “Help Me” window.) Label 12 is
the “Exit” button. This button brings up a screen which thanks
the student for trying out the system and performs some system-
wide cleanup procedures behind the scene.

Problem
#

Problem Set Solved? Solution Viewed? Average Student

1 1 No -- 13 attempts so far. Yes. 2 attempts to solve. Review Problem: 1 of set: 1

2 3 No -- 1 attempt so far. No. 2 attempts to solve. Review Problem: 2 of set: 3

1 4 Yes ! It took 5 attempts. No. 2 attempts to solve. Review Problem: 1 of set: 4

1 6 No -- 3 attempts so far. No. 2 attempts to solve. Review Problem: 1 of set: 6

3 6 No -- 1 attempt so far. No. 1 attempt to solve. Review Problem: 3 of set: 6

1 7 Yes ! It took 2 attempts. No. 1 attempt to solve. Review Problem: 1 of set: 7

2 7 No -- 1 attempt so far. No. 1 attempt to solve. Review Problem: 2 of set: 7

Figure 6. “My Performance button” output showing performance and links to previously attempted problems. Different font styles,
emphasis and the use of colour distinguishes solved problems from unsolved problems.

54 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 5 ISSN: 1690-4524

Figure 7. JITS’ Help screen is used to assist new users to become oriented with this ITS.

7. JITS AUTHORING TOOL

An authoring tool is currently being developed which provides the
teacher with a convenient means to add problems to the database
for JITS to use. This is a very easy process because the teacher
only needs to provide the following information:

a) the problem statement;
b) the problem description;
c) the required output; and
d) the skeleton structure of the program.

As a result, the JITS authoring tool is intended to be

extremely user-friendly and easy to add many problems of various
levels of difficulty.

Once the teacher has submitted the problems they are immediately
available to JITS and thus students of the system.
 The Authoring Tool provides a means to view the all the
problems in the lesson set and edit selected problems [17]. In the
Java Intelligent Tutoring System, the author of problems does not
provide a solution.

JITS carefully scrutinizes the student’s submission based on
the problem description, specification, required output and
template code is used by JITS uses to determine the appropriate
feedback to the student. This ensures the greatest degree
independent knowledge creation for each student [6, 18].

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 5 55ISSN: 1690-4524

Once the professor is properly authenticated to the system via
login screen, the JITS Authoring Tool User Interface is presented
as shown in Figure 8.

8. INFRASTRUCTURE DESIGN

The infrastructure design for JITS draws from the area of
leading-edge techniques and technologies for multithreaded
distributed concurrent e-learning application designs. The
Model-View-Controller (MVC) design pattern was used to
ensure that concurrency and robustness would be provided by
JITS. The MVC contains three main tiers: the client’s browser,
the middle-tier, and the database-tier.

By design, there were no restrictions placed on the browser.
In other words, JITS was designed to work with any browser, and
no custom installed client software of any sort was required. The
middle-tier is a server running a TomCat web server, currently
equipped with 4GB RAM and 2 Pentium-IV processors. The
database-tier is a separate server running ORACLE. The initial
JITS database schema was designed to support the core
functionality of JITS consisting of 3 tables: student, problems,
and student_problems. The student table contains information

regarding each student in the system such as student name,
password, current problem, etc.

The problems table contains details regarding programming
problems used by JITS such as problem description,
specifications, templates, etc. The student_problems table is an
intersection relation representing details regarding each student’s
attempt at a problem.
 The Model-View-Controller design pattern was a core
component to the design of JITS. Figure 9 depicts the MVC
design pattern. First the student makes a request (via HTTP in the
browser). The Controller module receives the request and
performs operations that include instantiating JavaBeans. These
beans are used to model the student as s/he works with JITS. The
collection of these beans represent the model of each student in
JITS. During specific operations, beans may need to retrieve
information from the JITS database schema (e.g., to select a new
problem or retrieve solutions to a problem, etc.). These data are
stored in the ORACLE JITS database schema represented in the
figure as the Enterprise Information System (EIS). The
information is gathered up and processed by the bean, which then
forwards it to the View component (i.e., the Java ServerPage
[JSP]), which then formats it appropriately for the student in the
JITS user interface and returns it to the student’s browser.

Figure 8. JITS Authoring Tool User Interface.

56 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 5 ISSN: 1690-4524

Browser

Servlet
(Controller)

JSP
(View)

Enterprise Information
System (EIS)

instantiates JavaBeans
(Model)

Request

Response

delegates

Servlet Container

 Figure 9. Model-View-Controller (MVC) design pattern implemented in JITS.

Hint Generation
An additional design consideration is the categories of hints that
are generated by JECA for JITS. There are a number of different
categories of hints that may be created as a result of the student’s
code submission. They are presented in Figure 10.

A KEYWORD_REPLACEMENT_HINT arises from a situation
where the student typed in a suitably close representation to a Java
keyword. For instance, if the student typed in “Cases,” this
would be interpreted as the keyword “case.” An
EXTENDED_TYPE_REPLACEMENT_HINT is when the student
wrote “interger” which will interpreted as “Integer”–the
java.lang.Integer data type. An
IDENTIFIER_REPLACEMENT_HINT is used in the situation
where a suitably close match to an existing identifier has been
found.

KEYWORD_REPLACEMENT_HINT = 1;
EXTENDED_TYPE_REPLACEMENT_HINT = 2;
IDENTIFIER_REPLACEMENT_HINT = 3;
GRAMMATICAL_HINT = 4;
CLOSE_BUT_LOGIC_ERROR = 5;
SUCCESSFULLY_SOLVED_PROBLEM = 6;
GENERAL_HINT = 7;
OTHER_TYPE_OF_HINT = 8;

Figure 10. Hint categories.

For example, consider the following snippet of code:

float my_float = 3.1415; // declaration
my_flot = my_floatt * 2; // and use

There would be two IDENTIFIER_REPLACEMENT_HINTs
generated for this section of code:

Identifier Replacement Hint:
Would you like me to replace "my_flot" with "my_float"?

Identifier Replacement Hint:
Would you like me to replace "my_floatt" with "my_float"?

A GRAMMATICAL_HINT is generated when the parser fails on

a specific production in the modified Java grammar. Specific
information regarding the error is recorded in a Hint object (e.g.,
_offending_token, and corrected_line_of_code).
The last two types of hints are GENERAL_HINT and

OTHER_TYPE_OF_HINT. GENERAL_HINT is used when the
student is far from the solution path and needs to be realigned with
the program statement and program specifications for the posed
problem. If the student’s code compiles but produces output that is
not the same as the required output, as specified in the problem
statement, the CLOSE_BUT_LOGIC_ERROR is used. The term
“close” in this expression is intended to convey that the student is
on the right track in terms of using the correct constructs, and code
compiles and generates output that is reasonably “close” to the
required output for this specific problem. When this type of error
occurs, JITS, via an AI_Module, investigates what the logic error
is and generates an appropriate hint. When the student solves the
problem the SUCCESSFULLY_SOLVED_PROBLEM hint is used.
 Last, OTHER_TYPE_OF_HINT is reserved for future research.

There are several pieces of important information represented
in a Hint object. (See Figure 11 for an illustration of a Hint
object.) The _type member corresponds with one of the six
types of categories of Hints currently supported in JECA. The
_col and _line members specify where the error occurred. The
_line_of_code and _error_pointer represent the source
code and the exact location of where the error occurred. There are
two tokens to assist in identifying where the error occurred in
terms of the tokens. _offending_token represents the precise
token the parser failed on, and
_previous_to_offending_token represents the last
successfully parsed token during parsing. The _hint member is
a String summarizing the actual hint relying on the values of other
data members in this object. It is intended to be used during the
feedback process during student tutoring. The last member of the
Hint class is the _confidence, which will be assigned an
integer from 1 to 10. A confidence value of 1 indicates a high
level of certainty, indicating the suggested hint is correct and will
bring the student closer to a compiled program. On the other hand,
a confidence value of 10 indicates uncertainty on behalf of the hint
generated. In these situations, the student will have to use their
own judgment based on the detailed information provided to them
by the Hint objects, namely the data members, _type, _col,
_line, _line_of_code, _error_pointer,
_offending_Token, and
_previous_to_offending_Token.

An example follows to illustrate these design aspects of the
proposed error correction algorithm. Given the source program
depicted in Figure 12, JECA would modify the program and
generate the following three Hint objects.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 5 57ISSN: 1690-4524

Hint

_type

_col

_line

_line_of_code

IDENTIFIER_REPLACEMENT_HINT

12

return Fact(n-1) * nn;

_error_pointer

_corrected_line_of_code

_offending_Token

_previous_to_offending_Token

_hint

_confidence

5

 ^

Fact

return

return fact(n-1) * n;

Identifier Replacement hint: Look near line: 5
column: 12. Look between the "return" and
the "(n-1)"

1

Figure 11. A JECA Hint object encapsulating identifier
replacement error and remediation information.

public class Factorial {
 public static void main(String args[]) {
 System.out.println(“22! is ” + fact (22));
 }

 public static long fact (long n) {
 if (n=1)
 return 1;
 else
 return Fact(n-1) * nn;
 }

Figure 12. Factorial program with grammatical errors and
syntax errors (emphasized as boldface).

JITS then takes these hints, and, in accordance with the
AI_module, offers the most suitable feedback to the student. The
Hint objects are displayed below for the Factorial problem (Figure
11) is presented below.

1. Grammatical hint: In the line: “if (n=1)...”

Look between the "n" and the "1". Suggestion:
“if (n==1) ...”

2. Identifier replacement hint: In the line “return
Fact(n-1) ...” Suggestion: replace “Fact” by
“fact”

3. Identifier replacement hint: In the line “return
Fact(n-1) ...” Suggestion: replace “nn” by
“n”

9. METHODOLOGY AND PROCEDURES

The methodology employed in this research is supported by two
distinct research components. The first component is related to the
manner in which JITS was designed and constructed. In this
research section, students and professors using the prototype JITS
offered suggestions and comments for the improvement of JITS.
The new knowledge was fed back into the redesign and
construction of JITS. Beyond the initial development of JITS, a

cyclic process was used: design, develop, test, modify, redesign,
redevelop, retest, etc. This research methodology involved
qualitative instrumentation including observation, surveys, and
personal interviews. The goal of this methodology was to improve
JITS.
 The second component of the methodology is related to the
manner in which JITS was evaluated from a quantitative
perspective. The research methodology for this section involved
an experimental design with repeated measures. The results from
this section of the research is not presented in this paper.
However, the qualitative evaluation of JITS is presented from two
distinct perspectives: students and professors.

Subjects
The population of this study was students across the province
taking a comparable course in programming. The sample in this
study was the students in their first year of college taking a
beginner Java programming course at the Sheridan Institute of
Technology and Advanced Learning. During the summer of June
to August 2004, there were two such classes taking this course.
One class was located at the Davis campus. This class was the
experimental group (i.e., JITSC). The other class was located at
the Trafalgar Road campus. This class was the control group,
which consisted of 23 students. One professor taught both classes
for the first 7 weeks. After a midterm break for week 8 in the
term, another professor took over and taught both classes for the
remainder of the term (i.e., for the last 7 weeks). Fourteen
students consented to try the Java Intelligent Tutoring System (i.e.,
JITSC). Approximately every week, ½ to 1 hour long sessions
were conducted by the researcher to elicit specific information
about their experience with the Java Intelligent Tutoring System.
 A similar study was conducted during the fall of September to
December 2004. During this period there were two instructors
teaching a first year Java programming course. Instructor “A” had
two classes; the JITSC group consisted of fourteen students, and
the C group consisted of 25 students. Instructor “B” had three
classes; the JITSC group consisted of fourteen students, the C1
group consisted of eighteen students, and the C2 group consisted
of 23 students. Both instructors taught for the entire semester (i.e.,
14 consecutive weeks). Every week, ½ to 1 hour long sessions
were conducted by the researcher to elicit specific information
about their experience with the JITS.
 During both time periods (Summer and Fall 2004) the JITSC
group were talked to and observed during the ½ to 1 hour long
sessions. Additionally, many JITSC students emailed the
researcher with comments and suggestions for improvement. The
manner in which students were interviewed was primarily
individually based; however, there were some occasions when an
issue was raised that were a shared concern among several
students. The total number of students involved in this entire
research project (i.e., all JITSC students) was 14*3 = 42. The kind
of note taking procedures were observations recorded in a
researcher’s log book. Such observations included information
regarding individual student’s progress through a specific
programming problem in JITS. For example, the programming
topic, the problem number, types of mistakes and errors, and JITS’
response to the student were all recorded in the researcher’s log
book.

Professors were also selected to participate in this study.
The selection of professors was based on a number of factors
including their knowledge of the Java programming language,
level of course offerings, and interest in offering critical
opinions on the Java Intelligent Tutoring System. A total of 4
professors were selected for this study.

58 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 5 ISSN: 1690-4524

Statement of Procedures
An interview-style survey sheet was constructed to aid in
gathering input from students in the JITCS groups and
professors. The survey included six open-ended questions to
facilitate a great number of perspectives and opinions. One of
the measurement instruments for this component of the study
was this survey, depicted in Table 3. By presenting the survey
to students and teachers who have used JITS, feedback
representative of these two perspectives was gathered.
Additionally, the researcher often visited the classroom to
informally assess JITS. Between ½ hour and 1 hour per week
was spent with students and professors, who offered important
suggestions for improving JITS. This information was recorded
in the researcher’s logbook. This form of data gathering proved
to be the most effective way of receiving feedback from students
and instructors for the refinement and improvement of JITS.

10. FINDINGS

Overall, the students found the Java Intelligent Tutoring System
enjoyable, beneficial, and useful. Table 4 depicts the summary

statistics of the qualitative survey from the student’s perspective.
It can be seen that JITS performed above average in all categories
and scored the highest in two categories: “Usefulness”, and “Ease
of Understanding Tutoring Style”.

Table 4. JITS Qualitative Summary Results for Students

JITS Qualitative Summary Results – Students

1. Usefulness…………………………………… 71%
2. Beneficial …………………………………… 64%
3. JITS is better than a traditional classroom……36%
4. Ease of JITS Tutoring Style…………………. 79%
5. Enjoyable……………………………………. 79%
6. Learn Better…………………………………. 71%

The Student’s Perspective
All of the students enjoyed working with JITS. Many voiced they
are pleased with the following:

1) Feedback mechanism – It provides hints quickly and to the

point. The hints are also not overwhelmingly complicated –
quite unlike traditional compilers.

Table 3. Qualitative interview sheet

Qualitative Project Interview
I am conducting a survey of those participants who were taught using the Java Intelligent Tutoring System at Sheridan. The information gathered from
our interview will be used for my research. This involves determining the effectiveness of learning in this environment. For each question select the
most appropriate response based on the following scale:
1 = strongly favorable to the concept, 2 = somewhat favorable to the concept, 3 = undecided, 4 = somewhat unfavorable to the concept, 5= strongly
unfavorable to the concept. The following questions will be asked during the interview.
1. How do you rate the Java Intelligent Tutoring Systems usefulness?

Very Useful Not Useful
 1 2 3 4 5
 Comments: ___

2. Do you feel the Java Intelligent Tutoring System is beneficial to your studies? List and explain the advantages/disadvantages of this learning

environment.
Very Beneficial No Benefits

 1 2 3 4 5
 Comments: ___

3. Compare JITS with a traditional classroom. Do you feel JITS is better or worse than an ordinary classroom teaching environment? Identify

any similarities and differences between a traditional classroom experience and the JITS learning experience.
 JITS is much JITS is much
 better than worse than
 traditional traditional
 classroom classroom
 1 2 3 4 5
 Comments: ___

4. How do you rate the ease with which you use and understand the tutoring style of the JITS?
 Very easy Very difficult
 to use & understand to use & understand
 1 2 3 4 5
 Comments: ___

5. Have you enjoyed JITS? Explain why or why not.
 Very Enjoyable Not enjoyable
 1 2 3 4 5
 Comments: ___

6. Do you feel you learn more detailed information or about the same as a regular classroom when using JITS? Explain why or why not.
 Learn Better Learn the same
 1 2 3 4 5
 Comments: ___

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 5 59ISSN: 1690-4524

2) One student stated, “[JITS] tells me the exact spot in the code
where I need make my correction – I like that. I wish other
systems would do that.”

3) JITS helps students solve syntax and logic errors while
developing a solution to a problem. One student stated, “I
am definitely learning better in this environment than in a
traditional environment.”

4) Integrated Development Environment – similar to
professional programming environments.

5) Many students stated that they felt JITS was very useful
since it is available 24/7 and all a student needs is a browser.

6) One student said, “Can we have this system in our course
from now on?”

The Professor’s Perspective
The section summarizes the views of Professors involved in this
study. Table 5 shows the statistical results of the interviews.

Table 5. JITS Qualitative Summary Results: Professors

JITS Qualitative Summary Results – Professors

1. Usefulness…………………………………… 100%
2. Beneficial …………………………………… 75%
3. JITS is better than a traditional classroom…… 25%
4. Ease of JITS Tutoring Style…………………. 75%
5. Enjoyable……………………………………. 75%
6. Learn Better…………………………………. 75%

Many Professors said they are pleased with JITS in the

following ways:
1) One Professor stated, “The embedded logic unit called JECA

is a sound tool – it picks out the most significant error the
student need to focus on. I feel the student is developing
core programming debugging skills with JITS.”

2) Integrated Development Environment – similar to
professional programming environments.

3) Many Professors said that they would like to use JITS to
augment their existing Java courses. They felt that JITS
provides a means for students to receive extra tutoring when
the Professor is not available.

4) One Professor said, “The quality of tutoring that JITS
performs is comparable to a human tutor.”

5) All of the Professors said that they liked the fact that there
was no client installation required for them or their students.

6) Many Professors were happy that JITS was available 24/7.
This makes it easier for students to work on problems at their
own time and at their own pace.

One Professor suggested that JITS could produce a report

representing the student’s performance over a period of time.
This would also be helpful to identify students who need
additional assistance. It could also be used to identify those
students who are doing extremely well and may be interested in
more challenging problems.

All of the Professors enjoyed using the JITS Authoring tool.
Although still under development, the prototype made Professors
aware that they can easily create, edit, and review problems. Once
the problems have been added they are immediately available to
their students. A second benefit Professors stated was the fact that
they needed only a browser to access the Authoring tool and JITS.
Custom client installations are not required to use the Java
Intelligent Tutoring System and the Authoring Tool. The majority
of Professors in this study felt that this 24/7 access from any
Internet connection was a very good feature.

11. CONCLUSIONS

The Java Intelligent Tutoring System prototype has been a
success. JITS was met with interest by students and Professors
alike. After trying numerous problem sets with several groups of
students and Professors, they were happy with the performance of
JITS. The various issues and suggestions raised by students and
Professors are being reviewed. For instance, the researcher is
currently investigating video-streaming as an instructional aid and
enhanced logic support for students while working on solving a
problem. Integration of some of these requested features will be
available in the future releases of the Java Intelligent Tutoring
System available soon.

12. REFERENCES

[1] M. Boyd, "Center for instructional technologies," vol. 2003, 2003.
[2] S. B. Bloom, "The 2-sigma problem: The search for methods of

group instruction as effective as one-to one- tutoring," Educational
Researcher, vol. 13, pp. 4-16, 1984.

[3] W. Tracey, R., The Human Resources Glossary: The Complete
Desk Reference for HR Executives, Managers and Practitioners,
Third ed: CRC Press, 2003.

[4] J. R. Anderson, "Production Systems and the ACT-R Theory," in
Mind readings: Introductory selections on cognitive science, P.
Thagard, Ed. Cambridge, MA: MIT Press, 1998, pp. 59-76.

[5] J. R. Anderson and R. Pelletier, "A Development System for
Model-Tracing Tutors," presented at The International Conference
on the Learning Sciences, Northwester University, Evanson,
Illinois, USA, 1991.

[6] K. R. Koedinger, "Cognitive tutors," in Smart machines in
education, K. D. Forbus and P. J. Feltovich, Eds. Cambridge, MA:
MIT Press, 2001, pp. 145-167.

[7] A. C. Graesser, N. K. Person, and D. Harter, "Teaching tactics and
dialog in autotutor," International Journal of Artificial Intelligence
in Education, vol. 12, pp. 12-23, 2001.

[8] Woolf, J. Beck, C. Eliot, and M. Stern, "Growth and maturity of
intelligent tutoring systems: A status report," in Smart machines in
education, K. D. Forbus and P. J. Feltovich, Eds. Cambridge, MA:
MIT Press, 2001, pp. 100-144.

[9] R. C. O'Reilly and Y. Munakata, Computational Explorations in
Cognitive Neuroscience. London, England: MIT Press, 2000.

[10] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and R. Pelletier,
"Cognitive Tutors: Lessons learned," The Journal of the Learning
Sciences, vol. 4, pp. 167-207, 1995.

[11] J. R. Anderson, C. F. Boyle, A. T. Corbett, and M. W. Lewis,
"Cognitive Modelling and Intelligent Tutoring," Artificial
Intelligence, vol. 42, pp. 7-49, 1990.

[12] N. T. Heffernan and K. R. Koedinger, "The Design and Formative
Analysis of a Dialog-Based Tutor.," presented at AI in Education
2000 Workshop on Building Dialogue Systems, 2001.

[13] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, "Identifying
and correcting Java programming errors for introductory computer
science students," presented at 34th SIGCSE technical symposium
on Computer Science Education, Reno, Navada, USA, 2003.

[14] E. R. Sykes and F. Franek, "Presenting JECA: A Java Error
Correcting Algorithm for the Java Intelligent Tutoring System,"
presented at IASTED International Conference on Advances in
Computer Science and Technology, St. Thomas, Virgin Islands,
USA, 2004.

[15] E. R. Sykes and F. Franek, "A Prototype for an Intelligent
Tutoring System for Students Learning to Program in Java,"
International Journal of Computers and Applications, vol. 1, pp.
35-44, 2004.

[16] V. Sreenivasa, "JavaCC User Manual," 2006.
[17] C. N. Rowe and P. T. Galvin, "An authoring system for intelligent

procedural-skill tutors.," IEEE: Intelligent Systems, vol. 14, pp.
61-69, 1998.

[18] A. C. Graesser and N. K. Person, "Question asking during
tutoring," American Educational Research Journal, vol. 31, pp.
103-137, 1994.

60 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 5 ISSN: 1690-4524

	Qualitative Evaluation of the Java Intelligent Tutoring System
	SOURCE Citation

	P655705

