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Abstract 

 

Two approaches for the intensification of the mineral carbonation reaction are combined 

and studied in this work, namely: (i) the calcium leaching and aragonite promoting 

effects of magnesium chloride (MgCl2), and (ii) the passivating layer abrasion effect of 

sonication. The alkaline materials subjected to leaching and carbonation tests included 

lime, wollastonite, steel slags, and air pollution control (APC) residue. Batch leaching 

tests were conducted with varying concentrations of additives to determine extraction 

efficiency, and with varying solids-to-liquid ratios to determine solubility limitations. 

Aqueous mineral carbonation tests, with and without the use of ultrasound, were 
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conducted applying varying concentrations of magnesium chloride and varying 

durations to assess CO2 uptake improvement and characterize the formed carbonate 

phases. The leaching of calcium from lime with the use of MgCl2 was found to be atom-

efficient (1 mol Ca extracted for every mole Mg added), but the extraction efficiency 

from slags and APC residue was limited to 26–35 % due to mineralogical and 

microstructural constraints. The addition of MgCl2 notably improved argon oxygen 

decarburization (AOD) slag carbonation extent under sonication, where higher additive 

dosage resulted in higher CO2 uptake. Without ultrasound, however, carbonation extent 

was reduced with MgCl2 addition. The benefit of MgCl2 under sonication can be linked 

to the preferential formation of aragonite (85 wt% of formed carbonates), which 

precipitates on the slag particles in the form of acicular crystals with low packing 

density, thus becoming more susceptible to the surface erosion effect of sonication, as 

evidenced by the significantly reduced carbonated slag particle size. 

 

Keywords: magnesium chloride; leaching additive; aragonite polymorph; ultrasound 

intensification; mineral carbonation. 

 

1. Introduction 

 

Mineral carbonation is an attractive route for the storage of CO2 due to the 

geochemical stability of the formed carbonates, and is also a potentially viable route for 

the valorisation of alkaline waste or low-value materials, such as industrial slags, ashes 

and tailings, due to the reduction of basicity, the predominant stabilization of leaching, 

and the formation of more marketable mineral products (Bobicki et al., 2012; Pan et al., 

2012; Sanna et al., 2012; Bodor et al., 2013; Kirchofer et al., 2013). Much work has 

been done in recent years to identify suitable materials for mineral carbonation, to 

understand the fundamental mechanisms that control kinetics and conversion, and to 

develop processing routes that intensify the reaction whilst reducing energy demand 

(Zevenhoven et al., 2011; Santos and Van Gerven, 2011). Two main mineral 

carbonation routes have been established: (i) indirect carbonation, wherein the alkaline-

earth components (mainly Ca and/or Mg) are first extracted from the solids into an 

aqueous solution, which is then contacted with CO2 for precipitation of the carbonates, 
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and (ii) direct carbonation, wherein the solids (dry, wet or in aqueous slurry) are directly 

reacted with CO2, and thus the carbonate products are formed together with the inert 

and residual minerals. In either case, the mobility of the alkaline-earth elements from 

the solids is a major limitation for achieving high conversion rates and CO2 uptake. 

To overcome this problem, researchers have turned to finding suitable leaching 

agents, which ideally should have high extraction efficiency, but at the same time 

should have less affinity for the alkaline-earth elements than the carbonate ion (CO3
2-

), 

to allow the precipitation of carbonates upon pH-swing. Acetic acid (CH3COOH) has 

been successfully applied for the production of precipitated calcium carbonate (PCC) 

from steel slag (Eloneva et al., 2008), but after extraction it is necessary to add a strong 

base (e.g. NaOH) to neutralize the acid and promote carbonate precipitation; the 

neutralized acetate can potentially be regenerated into acetic acid, but at a large 

processing cost. To avoid regeneration, Eloneva et al. (2009) also tested the efficacy of 

ammonium salts (NH4Cl, CH3COONH4, NH4NO3) and found positive results with steel 

converter slag, but the efficiency was poorer for blast furnace and ladle slags; this was 

attributed to calcium being predominantly bound as silicates in these materials (as 

opposed to free lime (CaO) in converter slag). The loss of ammonia (NH3) in the off-gas 

also becomes an added concern when using these additives (Eloneva et al., 2011). 

In the present work, a novel approach to enhancing calcium mobility is investigated, 

namely the use of magnesium chloride (MgCl2) as a leaching agent. This concept has its 

roots in a recent study conducted by our group (Santos et al., 2012) on the sonochemical 

synthesis at low temperatures of pure aragonite precipitates possessing novel crystal 

morphology (hubbard squash-like). Aragonite is a polymorph of calcium carbonate 

typically formed at higher temperatures (90–450 °C) and in marine environments 

(Kitano and Hood, 1962; Passe-Coutrin et al., 1995; Santos et al., 2013b). The strategy 

of using MgCl2 to promote aragonite during mineral carbonation had been described in 

earlier studies (Ahn et al., 2007; Hu et al., 2008), with the mechanism being tentatively 

attributed to the binding of Mg
2+

 to the calcite polymorph crystal surface, thus inhibiting 

its growth, and to the reduction in supersaturation with respect to [CO3
2-

] as a result of 

pH reduction. Santos et al. (2012) found that by combining MgCl2 with ultrasound, it is 

possible to obtain high purity aragonite at temperatures as low as 24 °C. It was also 

observed, in agreement with reported findings of Xiang et al. (2006), that MgCl2 also 
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acts as a calcium leaching agent, as upon its addition to a slurry of Ca(OH)2, the 

calcium becomes solubilised, while the magnesium precipitates as Mg(OH)2 (Eq. 1). 

Subsequently, upon carbonation, the calcium precipitates as CaCO3, while the 

magnesium returns into solution with the chloride (Eq. 2). Both steps are exothermic, 

but most of the reaction heat is released in the carbonation step. 

 

Ca(OH)2(s) + MgCl2(aq) + H2O(l) → Mg(OH)2(s) + CaCl2(aq) (1) 

ΔH
°
Eq. (1) = –19.4 kJ/mol 

 

CaCl2(aq) + H2CO3(aq) + Mg(OH)2(s) → CaCO3(s) + MgCl2(aq) + 2H2O(l) (2) 

ΔH
°
Eq. (2) = –160.8 kJ/mol 

 

These reaction steps are illustrated in Fig. 1 with crystallographic data from 

Ceulemans (2011). At first, when magnesium chloride is added to a slurry of calcium 

hydroxide (portlandite), formation of brucite (Mg(OH)2) is seen. Once CO2 is 

introduced into the slurry, carbonic acid reacts with dissolved calcium, forming calcite 

and aragonite polymorphs of calcium carbonate (the ratio of these depends on other 

reacting conditions, studied by Santos et al. (2012)). As the reaction progresses, 

carbonate diffraction peaks become predominant while brucite peaks shrink, indicating 

solubilisation back into magnesium chloride. If the reaction is halted prior to 

completion, the product will contain brucite; this is undesirable as it signifies loss of 

additive and low product purity. When the reaction is completed, only the diffraction 

patterns of calcium carbonates can be seen, meaning that magnesium chloride has been 

fully regenerated. 

Key to these reaction steps are the greater solubility of CaCl2 over MgCl2, and the 

lower solubility of CaCO3 over Mg-carbonates (Hu et al., 2008). This mechanism 

prevents the formation of Mg-carbonates in the product, thus ensuring high CaCO3 

product purity and additive regeneration. Concurrent precipitation of Ca- and Mg-

carbonates is also prevented since it would imply the formation of HCl in solution, 

unless this was neutralized with, for example, ammonia (NH3) (Ferrini et al., 2009). As 

such, this self-regenerative mechanism also enables the re-utilization of the magnesium 

chloride-rich solution in further carbonation cycles without the need for purification or 
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re-crystallization (Ma et al., 2011; Santos et al., 2012). One constraint of this approach, 

however, is that it is applicable only to direct carbonation systems, as the leached solids, 

containing the precipitated Mg(OH)2, cannot be separated from the Ca-rich solution 

prior to carbonation. Besides leaching of CaO, MgCl2 also has the potential to leach 

calcium from siliceous materials, as it is a known contributor to cement and concrete 

corrosion exposed to saline waters (Kurdowski and Duszak, 1995). 

Based on these findings, the present work aims to study the calcium leaching 

efficiency of MgCl2 for a variety of alkaline materials useful for mineral carbonation, 

with particular emphasis in accessing the ability of MgCl2 to leach calcium from Ca-

silicate, Ca-ferrite, Ca-sulphate and Ca-aluminate rich materials. Furthermore, this study 

also investigates the effect of MgCl2 on the mineral carbonation kinetics and 

conversion. For this purpose, the methodology utilized in another of our studies, 

reported in Santos et al. (2013a), wherein both mechanical mixing and sonication were 

utilized for the carbonation of stainless steel slags, is herein adopted. In that study, the 

application of ultrasound was successfully shown to intensify the mineral carbonation 

reaction, via the reduction in particle size and the removal of passivating layers (residual 

silica and mainly calcitic precipitates), thus increasing the specific surface area and 

exposing the unreacted particle core to the reactive medium. 

Here, it is theorized that by combining MgCl2 with ultrasound during the carbonation 

of silicate-rich and microstructurally heterogeneous alkaline materials, the precipitated 

carbonate layer will become enriched in aragonite. This effect can have implications on 

the morphology and on the packing density of carbonate layer, given the different 

crystal shapes formed by each polymorph: rhombohedral and scalenohedral for calcite, 

and acicular (needle-like) for aragonite (Santos et al., 2012). In turn, the 

porosity/permeability of the passivating layer may improve, and it may become more 

fragile to abrasion/attrition (caused by inter-particles collisions or by sonication 

cavitations). The ultimate consequence of these effects may be improved carbonation 

kinetics and/or more extensive carbonation conversion (i.e. greater CO2 uptake); these 

aspects are investigated in the present work. 

 

2. Methodology 



DOI:10.1016/j.mineng.2013.07.020 

6 

 

 

2.1 Alkaline Materials 

 

A total of six calcium-containing alkaline materials were utilized in leaching and 

carbonation experiments. Analytical grade lime, with CaO content of 98.3 wt%, was 

obtained from Chem-Lab. Milled wollastonite (D50 = 57 μm), with CaO content of 

51.2 wt%, was obtained from Sibelco Specialty Minerals Europe. Argon Oxygen 

Decarburization (AOD) and Continuous Casting (CC) slags, with CaO contents of 

56.8 wt% and 52.1 wt%, respectively, were obtained from a stainless steel producer and 

sieved to < 500 μm. Basic Oxygen Furnace (BOF) slag, with CaO content of 49.0 wt%, 

was obtained from a steel producer and milled to < 80 μm. Municipal solid waste 

incineration (MSWI) air pollution control (APC) residue, with CaO content of 

49.8 wt%, was obtained from an incinerator operator and used as received. The 

complete chemical and mineralogical compositions of the alkaline materials are 

presented in Tables 1 and 2, respectively. 

 

2.2 Leaching Tests 

 

Leaching tests were performed in sealed polyethylene bottles by mixing one gram of 

alkaline solids, ultrapure water, and the desired amount of leaching agent, to a total 

aqueous volume of 100 ml, and shaking on a vibration table (Gerhardt Laboshake) at 

160 rpm and 25 °C for 24 hours. Selected experiments were also conducted with 

varying solids loading (up to 25 g/100ml) and leaching duration (30 min to 48 hrs) to 

study the effect of these parameters. At leaching completion, the slurries were filtered 

with 0.45 μm membrane filter, and the solutions were analyzed for dissolved calcium 

and magnesium contents. 

The following reagents were used as leaching agents in this study: magnesium 

chloride hexahydrate (MgCl2·6H2O, 99 wt%, Chem-Lab), hereafter referred to as MCH, 

sodium chloride (NaCl, 99.8 wt%, Chem-Lab), and hydrochloric acid (HCl, 37 wt%, 

Chem-Lab; diluted to 1 N prior to use). The different additives were added on the basis 

of equivalent moles of chloride (namely 2.0, 3.9, 7.9, 15.7 and 31.5 mmol/100ml) to 

facilitate comparison of the results. 
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2.3 Carbonation Tests 

 

Slurry carbonation experiments were conducted using a laboratory glass beaker with 

a volume of two litres and diameter of approximately 14 cm. The slurry suspension was 

mixed solely by a mechanical stirrer (Heidolph type RZ-R1) with straight blade 

impeller at 340 rpm for stirred experiments, or in combination with an ultrasound horn 

during sonication experiments. The ultrasound horn consisted of a Hielscher UP200S 

processor, which operates at 24 kHz frequency and delivers 200 W gross power, 

coupled to an S14 sonotrode, which has a tip diameter of 14 mm, maximal amplitude of 

125 μm, and an acoustic power density of 105 W/cm². The horn was operated at 

maximum power (net delivery ~170 W) and 60 % amplitude (according to optimal 

conditions found by Santos et al. (2012)). A PT100 temperature sensor was used to 

monitor solution temperature. 

Carbonation experiments were performed with 10 g AOD slag in one litre of 

ultrapure water, which reached a height of 7.5 cm; for sonication experiments the probe 

tip was immersed 3.5 cm from the beaker bottom, placed parallel to the stirrer shaft but 

slightly off-centred due to space constraint. For experiments with MCH addition, the 

desired amount (2.05, 4.1, 8.3 or 16.6 g) was added prior to slag addition to allow for 

complete dissolution. Temperature was controlled by use of a hot plate (IKAMAG 

RCT) for heating (in the case of stirred experiments) and water bath for cooling (in the 

case of sonicated experiments, since ultrasound produces heat, which must be dissipated 

to maintain a constant temperature). A temperature of 50 °C was maintained during 

carbonation experiments. Carbon dioxide addition commenced once the target 

temperature was reached, delivered to the solution by bubbling from a compressed gas 

cylinder (≥ 99.5 % CO2 purity), with flow controlled at 0.72 NL/min by a Brooks Sho-

rate rotameter. Carbonation duration varied from 30 to 240 min, after which the slurry 

was filtered (Whatman No. 2), and the recovered solids were dried at 105 °C overnight. 

 

2.4 Analytical Methods 
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Chemical composition of solid samples was determined by X-ray Fluorescence 

(XRF, Panalytical PW2400). Mineralogical composition was determined by X-Ray 

Diffraction (XRD), performed on a Philips PW1830 equipped with a graphite 

monochromator and a gas proportional detector, using Cu Kα radiation at 30 mA and 

45 kV, step size of 0.03° 2θ and counting time of 2 s per step, over 10–65° 2θ range. 

Mineral identification was done in Diffrac-Plus EVA (Bruker) and mineral 

quantification (QXRD) was performed by Rietveld refinement technique using Topas 

Academic v4.1 (Coelho Software). The volume-based particle size distributions and 

mean particle diameters were determined by wet Laser Diffraction (LD, Malvern 

Mastersizer). The powder morphology was observed by Scanning Electron Microscopy 

(SEM, Philips XL30). The CO2 uptake of carbonated materials was quantified by 

Thermal Gravimetric Analysis (TGA, Netzsch STA 409), operated from 25 to 900 °C 

under nitrogen flow at a heating rate of 15 °C/min. The amount of CO2 released was 

quantified by the weight loss between 500–800 °C, which is attributable to CaCO3 

decomposition. Determination of aqueous elemental concentrations was performed by 

Inductively Coupled Plasma Mass Spectroscopy (ICP-MS, Thermo Electron X Series) 

on samples diluted in 0.3 M nitric acid solution. 

 

3. Results and Discussion 

 

3.1 Leaching Results 

 

3.1.1 Aqueous phase analyses 

The results of batch leaching tests, utilizing six different alkaline materials and three 

different leaching agents, are presented in Fig. 2. Leaching results are expressed as 

percentage fraction of calcium extracted from the alkaline materials, based on the XRF 

determined CaO composition of the solids. To facilitate comparison of the results, the 

amounts of leaching agents are normalized on the basis of moles of added chloride, the 

chemical species that combines with calcium to form soluble CaCl2. 

The results indicate that sodium chloride is a generally ineffective calcium leaching 

agent, as its addition results in only incremental improvement beyond the innate 

solubility of calcium from the differing materials. Jo et al. (2012) similarly obtained 
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only 1 % improvement in calcium leaching extent (from 4.6 to 5.6 %) from Ordinary 

Portland Cement (OPC) in 0.5 M NaCl. This confirms that calcium leaching is driven 

by the greater solubility of calcium hydroxide over the hydroxide of the additive; that is, 

as NaOH is more soluble than Ca(OH)2, the addition of NaCl does not result in 

significant calcium leaching. 

The most effective leaching agent is HCl, unsurprisingly as this is the most acidic 

additive, enabling 73–94 % Ca extraction efficiency from the different solids at the 

highest tested dosage. The strong affinity of hydronium ions (H3O
+
) for hydroxyl ions 

(OH
-
), leading to the neutralization reaction, results in the formation of highly soluble 

chlorides of the alkali components of the solid substrates. This effect, however, means 

that HCl is not selective for calcium, being able to solubilise other major components of 

the alkaline materials, especially Mg (74–100 % extraction from three slags and APC 

residue at highest dosage). 

Magnesium chloride hexahydrate (MCH) proves to be even more efficient than HCl 

for calcium leaching from CaO at every dosage tested, up to a maximum leaching of 

100 %. For the three slags and the APC residue, MCH performed moderately well, 

achieving 26–35 % calcium leaching. For wollastonite, however, the extraction 

efficiency of MCH was essentially nil. This suggests that mineralogy is the most likely 

reason for the lower calcium extraction efficiency of MCH versus HCl, given that the 

slags and APC residue are predominantly composed of silicates, ferrites, sulphates and 

aluminates, most of which likely require lower pH to hydrolyze compared to lime. In 

particular, the monocalcium silicate (CaSiO3) that makes up wollastonite (Table 2) 

appears to be substantially less reactive with respect to MCH than the complex silicates 

that make up the slags (e.g. β- and γ-dicalcium silicates, bredigite, merwinite...). 

Analogously, it is known that wollastonite requires much more aggressive conditions 

(i.e. higher T and P) to be susceptible to aqueous mineral carbonation than steel slags 

(Huijgen et al., 2006). 

Fig. 3a presents the dissolution of calcium from CaO on a molar basis, as a function 

of moles MCH added. This plot enables the determination of how atom-efficiently 

MCH extracts calcium. It can be seen that the amount of solubilised calcium (denoted 

Ca(sol) in the graph) is linearly proportional to the amount of MCH added, and is 

constantly greater than the 1:1 relationship. Upon further inspection, it is found that the 
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difference between the experimental and 1:1 lines is equal to the solubility of CaO in 

pure water (first data point). Hence, by deducting this value from the experimental data 

points, the new line (denoted Ca(+sol), to refer to the added Ca solubilisation obtained 

by additive use) lies precisely on the 1:1 line. This means that MCH atom-efficiently 

leaches calcium from CaO (i.e. 1 mmol Ca leached for every millimole Mg added) and 

that the innate solubility of Ca(OH)2 (from CaO hydration) is unaffected by the addition 

of MCH. 

On Fig. 3b the molar solubilisation of calcium from the other five alkaline materials 

as a function of MCH addition is presented. It is noted that, with the exception of the 

unresponsive wollastonite, calcium leaching at first increases proportionally to MCH 

addition, but eventually deviates from the slope of the 1:1 line, finally stabilizing at 

comparable levels (2.4–3.2 mmol/100ml). Incomplete leaching can occur due to the 

exhaustion of minerals susceptible to leaching by MCH, but can also be caused by the 

formation of a Ca-depleted silica-rich layer (Daval et al., 2009) or a layer of deposited 

precipitates (namely brucite (Mg(OH)2)) that surrounds the unreacted material present 

in the particle core (Kurdowski et al., 2004), possibly reducing permeability and/or 

increasing diffusion length, and thus limiting the extraction extent. However, brucite 

deposition might not be the cause, as it crystallizes into loosely packed fibrous 

structures (Ceulemans, 2011), and in an analogous study (Sinadinović et al., 1997), 

where CaCl2 was used for leaching Pb from PbSO4, resulting in the precipitation of a 

layer of insoluble CaSO4, this layer was found to be porous and to not appreciably 

impede leaching. It is also apparent from Fig. 3b that leaching from BOF slag and APC 

residue at zero MCH addition (i.e. in water only) is greater than from the stainless steel 

slags, which is attributable to greater contents of lime (for BOF slag), portlandite 

(Ca(OH)2) and calcium chloride hydroxide (Ca(OH)Cl) (for APC residue) in their 

mineral composition (Table 2). 

The atom-efficiency of MCH used as a calcium leaching agent is further elucidated 

in Fig. 3c, where the percentage of added Mg remaining in solution after leaching 

(Mg,sol) is plotted versus the amount of added MCH. It should be restated that the 

calcium leaching mechanism involves the precipitation of brucite (Mg(OH)2), and thus 

effective use of MCH should result in disappearance of Mg from solution. This is 

indeed the case for CaO; Fig. 3c shows that dissolved Mg remains essentially nil up to 
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16 mmol/100ml (sufficient to leach 0.9 g CaO). The opposite occurs for wollastonite, 

with essentially all added Mg remaining in solution due to the low reactivity of the 

material. In the case of the steel slags, the amount of solubilised Mg is nil for low MCH 

additions, indicating high leaching efficiency (≥ 99 %), but eventually increases as the 

amount of extractable calcium (i.e. calcium amiable to MCH leaching) in the slags 

decreases. In contrast, in the case of APC residue, the leaching efficiency (100 % – 

% Mg,sol) of MCH is consistently lower, even for the smallest amount of MCH 

addition (45 %). This can be explained by the fact that much of the calcium leaching at 

this level is due to the inherent solubility of the residue, and so only part of the 

magnesium added participates in the leaching/precipitation extraction mechanism. 

To test if solubility limitation may also limit calcium extractability, besides the other 

possible aforementioned mineralogical mechanisms, and to assess the scalability of 

MCH-enhanced leaching in view of mineral carbonation processes, experiments were 

performed using CC slag with increasing solids concentrations (from 1.0 to 

25.0 g/100ml), at fixed MCH to slag ratio of 0.8:1, and 24 hours duration. These results 

are presented in the first set of data of Fig. 4, where the amount of soluble calcium is 

normalized on the basis of millimoles leached per gram solids. As can be seen, the 

normalized concentration of calcium remains essentially constant (within an 

experimental variability of ± 3 %) up to 10 g/100ml, and slightly decreases at 

25 g/100ml, possibly as a result of poor mixing at this high solids loading. 

Another experimental variation presented in the second set of data of Fig. 4, also 

aiming to test extraction limitations, consisted in sequentially leaching CC slag with 

MCH three times, for 24 hours each batch, at a fixed MCH to slag loading ratio of 4.0:5 

(g/100ml units). Calcium leaching from the second and third extractions was found to 

be negligible. Based on these two sets of experiments, it can be said that MCH-

enhanced calcium leaching does not reach a limiting capacity in the operating range 

tested. Thus mineralogical mechanisms are most likely responsible for limiting MCH-

enhanced calcium extraction to lower levels than those achieved with HCl (26 % versus 

86 % in the case of CC slag (Fig. 2)). 

Lastly, the effect of leaching duration was also assessed using a fixed MCH to slag 

loading ratio of 0.8:1; results are presented in the third set of data of Fig. 4. It is found 

that MCH leaching is time-dependent, but that in the first 30 minutes approximately 
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half of the leaching that occurs after 48 hours takes place. This is satisfactory, since 

carbonation reactions of Ca-bearing materials usually last for tens of minutes to a few 

hours, and thus the leaching and carbonation reactions can potentially occur 

simultaneously. 

 

3.1.2 Solid phase analyses 

More insight on the mineralogical mechanisms of MCH-assisted Ca-leaching was 

gained by analyzing leached solids by QXRD and comparing the mineralogical changes 

to the pre-leaching materials. Results are presented in Fig. 5, which includes 

superimposed pre- and post-leaching diffractograms and quantitative comparative data. 

These experiments were conducted with MCH to solids loading ratio of 4.0:5 to 

produce sufficient leached materials for analysis. 

In the case of CaO, Fig. 5a shows that, predictably, lime is at first transformed to 

portlandite (Ca(OH)2). The calcium leaching from this material is reflected by the 

significant amount of brucite (Mg(OH)2) formation (21 wt% in the leached solids). 

Evidently, since the amount of MCH in this experiment was not sufficient to fully leach 

all the calcium (~18 g MCH would have been required for complete leaching of 5 g 

CaO), the leached solids still contain a substantial amount of portlandite. 

In the case of wollastonite (Fig. 5b), the diffractograms of the pre- and post-leaching 

materials are virtually identical, in agreement with its negligible response to MCH 

leaching. The APC residue underwent significant mineralogical changes (Fig. 5c). In 

particular, portlandite and calcium chloride hydroxide were almost completely dissolved 

(87–95 %), while significant formation of brucite was detected (38 wt%). The increase 

of anhydrite (CaSO4) concentration is most likely a result of mass enrichment, since a 

substantial proportion of the material dissolved into the MCH solution (due to MCH-

induced leaching as well as innate dissolution of soluble salts inherently present, 

including halite, sylvite and tachyhydrite (Table 2)). 

The stainless steel slags underwent less significant changes in mineralogy (Figs. 5d 

and 5e), with some reduction (11–21 %) in the amounts of γ-dicalcium silicate and 

bredigite (the latter only for AOD slag). It is possible that other alkali phases partially 

solubilise, but if they do so in similar proportions (i.e. congruently), it becomes difficult 

to gauge such changes by XRD analysis. Also, only modest deposition of brucite was 
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detected in CC slag (3 wt%), possibly as the complex diffraction patterns of the slags 

can mask small changes in composition. Finally, the simple calcium minerals from BOF 

slag (lime and portlandite) were, as could be expected, significantly solubilised in the 

presence of MCH (Fig. 5f). This resulted in appreciable precipitation of brucite 

(16 wt%). 

 

3.2 Carbonation Results 

 

In view of the positive effect of magnesium chloride in enhancing the leaching of 

calcium from alkaline materials, experiments were conducted to test if the use of MCH 

as an additive to aqueous mineral carbonation improves carbonation kinetics or extends 

carbonation conversion, and for that matter CO2 uptake. An additional hypothesis to be 

tested was if the promotion of the aragonite polymorph of calcium carbonate, known to 

occur at moderate reaction temperatures in the presence of dissolved Mg coupled to 

sonication (Santos et al., 2012), could also affect the kinetics, conversion and uptake. 

As such, a series of experiments was conducted emulating the carbonation conditions 

utilized in Santos et al. (2013a), wherein the effect of ultrasound for the intensification 

of the carbonation of AOD and CC slags was tested and confirmed. 

In the current study, AOD slag was selected as the carbonating material. This slag 

was chosen as, compared to CC slag and based on our prior works (Santos et al., 2013a 

and b), it stands to benefit most from improved conversion. Four experimental 

variations were performed: (i) mixer-only without MCH; (ii) mixer-only with MCH; 

(iii) combined mixer/ultrasound without MCH; and (iv) combined mixer/ultrasound 

with MCH. The other experimental parameters varied were reaction time (30, 120 and 

240 minutes) and, for experiments with MCH addition, amount of MCH added (2.05, 

4.1, 8.3 and 16.6 g/L). 

 

3.2.1 CO2 uptake analysis 

The results of carbonation tests, expressed in the form of CO2 uptake determined by 

TGA, are presented in Figs. 6a (mixer-only) and 6b (combined mixer/ultrasound). The 

maximal theoretical CO2 uptake capacity of AOD slag, based on its CaO composition, 

is 0.446 g,CO2/g,slag. The CO2 uptake was significantly enhanced with the use of 
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ultrasound, for both the cases with and without MCH (increasing from a range of 0.10–

0.14 to the range of 0.19–0.27 g,CO2/g,slag after 240 minutes). This finding agrees with 

our previous work (Santos et al. 2013a), and can be attributed to the reduction in 

particle size and removal of passivating layers (Ca-depleted silica-rich layer, and 

deposited carbonates) caused by sonication (see Fig. 7b; further discussion follows in 

Section 3.2.2). 

The addition of MCH notably improved carbonation extent when using ultrasound 

(Fig. 6b), where higher MCH dosage resulted in higher CO2 uptake for each reaction 

duration used. For the case of mixer-only, however, it is seen that only for the lowest 

MCH dosage the CO2 uptake is slightly enhanced (Fig. 6a); at higher MCH dosages the 

carbonation extent is reduced, for each of the reaction durations used. It is also found 

that the CO2 uptake of mixer/ultrasound + MCH experiments significantly surpasses 

those of mixer-only + MCH at longer reaction times only (120 and 240 min), while at 

30 min the CO2 uptakes are comparable. 

These observations suggest that the carbonation enhancement effect of MCH is not 

due to calcium leaching enhancement; in fact, it appears that MCH leaching delays the 

carbonation kinetics (this was also experienced with Ca(OH)2 carbonation experiments 

conducted by Santos et al. (2012)). Mignardi et al. (2011) suggest that MgCl2 lowers the 

degree of CO2 degassing, thus regulating the availability of carbonic ions in solutions. 

Verification by geochemical modelling (Table 3) confirms that MCH additions to 

calcite-saturated solution enhances the dissociation of carbonic acid (H2CO3(aq)). These 

same simulations also show that the salting-out effect, where the solubility of CO2 

decreases as a function of electrolyte concentration (Yasunishi and Yoshida, 1979), is 

prevented in a calcite-saturated system. Kinetic effects, however, are not captured in 

these equilibrium simulations, and could play a role in the slowing of MCH-mediated 

carbonation. It thus appears that mineralogical and microstructural effects are most 

likely responsible for the carbonation improvement achieved in the sonicated 

experiments, as discussed next. 

 

3.2.2 Mineralogical and morphological analyses 

The mineralogical composition of the three main carbonate products formed in the 

carbonated slags, determined by QXRD, is presented in Fig. 7a. The values for 
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experiments performed with different MCH dosages have been averaged for ease of 

comparison, as the quantification variability was relatively low (± 10 wt%). It is 

apparent that in experiments without MCH addition, calcite was the predominant 

carbonate phase formed. The addition of MCH to mixer-only experiments led to the 

formation of significant quantities of magnesian calcite (nominal chemical formula Ca1-

xMgxCO3, where x is typically 0–0.15 (Kitano et al., 1979)), although aragonite was 

predominant at 120 min. It is possible that small quantities of Mg from MCH additions 

became incorporated in the forming carbonates in these experiments, as was observed 

by Kim et al. (2006). The morphologies of the precipitated layers of these two carbonate 

products around the slag particles are very distinct: magnesian calcite crystals form into 

compact agglomerates (Figs. 8b and 8e) while aragonitic acicular (needle-like) crystals 

effloresce into less microstructurally packed formations (Figs. 8a and 8d). 

In the case of sonicated experiments with MCH, the preferential formation of 

aragonite is clearly evidenced in Fig. 7a; however, due to extensive attrition of the 

particles caused by sonication, the crystal morphology is not clearly discernible in 

Figs. 8c and 8f. Santos et al. (2012) attributed the formation of aragonite under 

sonication to two mechanisms: (i) imploding cavities generate localized regions of high 

temperature that can lead to the nucleation of aragonite seeds, given aragonite formation 

is promoted at higher temperatures; and (ii) the nucleation rate may be enhanced by 

sonication, thus maintaining stochastically preferable aragonite formation over calcite 

even at low crystal growth bulk temperatures. It should also be noted that insignificant 

amounts of brucite were detected in the carbonated slags (< 0.5 wt%), suggesting that 

the passivation of the particles by brucite deposition was not the cause of the 

detrimental effect of MCH on the CO2 uptake of mixer-only experiments. 

The formation of aragonite can be tied to the further reduction in particle size for 

experiments combining ultrasound with MCH (Fig. 7b). The use of ultrasound, without 

MCH, reduces the volume moment mean diameter (D[4,3]) of the carbonated slag from 

the range of 61–78 μm to a range of 44–48 μm, and the surface area moment mean 

diameter (D[3,2]) from 6.0–8.3 μm to 4.2–4.8 μm. The addition of MCH to sonicated 

tests further reduces the D[4,3] and D[3,2] to as low as 26 and 1.6 μm, respectively, 

after 240 min reaction time (particle morphology shown in Figs. 8c and 8f). 
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These reductions are significant, and can be explained by two mechanisms (Santos et 

al., 2013a): (i) the erosion of large particles is indicated primarily by the D[4,3] value 

(as it is sensitive to particle volume changes), and (ii) the formation of micron- to sub-

micron sized fragments is reflected on the D[3,2] value (which is sensitive to the 

formation of surface area). It thus appears that aragonitic crystals, due to their acicular 

morphology and arrangement, are more easily cleaved off the surface of the carbonated 

particles due to sonication, either through the induction of cavitation shock waves and 

micro-jetting on the particle surface (as observed by Shu et al. (2012)), or through 

enhanced inter-particle collisions (as recorded by Prozorov et al. (2004)). 

 

4. Conclusions 

 

This work studied the utilization of magnesium chloride (MgCl2) as an additive for 

the improvement of the mineral carbonation of alkaline materials. The objective was to 

leverage two aspects of MgCl2 to improve the carbonation reaction kinetics and extent: 

(i) its ability to enhance the leaching of calcium, via a reversible 

precipitation/solubilisation reaction mechanism, and (ii) its ability to promote (at 

suitable temperatures or in the presence of sonication) the preferential crystallization of 

the acicular (needle-like) aragonite polymorph of calcium carbonate (CaCO3). 

Leaching of lime (CaO) by MgCl2 was found to be atom-efficient; that is, one mole 

of Ca is extracted for every mole of Mg added. For the waste-derived materials (slags 

and APC residue), however, the efficiency at the highest tested dosage (0.316 M 

chloride basis) reduced to levels around 26–35 %, significantly lower than that with 

HCl (73–94 %), but much superior to that of NaCl (1–28 %). This leaching limitation of 

MgCl2 can be linked to the mineralogy of the waste materials, which are predominantly 

made up to silicates, ferrites, sulphates and aluminates. This effect was particularly 

evident from the very poor calcium leaching performance from wollastonite (CaSiO3). 

Conversely, the greater proportion of simple calcium minerals (e.g. lime, portlandite 

and calcium chloride hydroxide) in BOF slag and APC residue aided in the dissolution 

of calcium from these materials, as verified by X-ray diffraction. In addition, the 

formation of a Ca-depleted silica-rich layer surrounding the Ca-rich particle core can 

increase the diffusion length and contribute to the leaching limitation. Solubility limits, 
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on the other hand, were not reached in the concentration range tested, and leaching 

kinetics were found to be sufficiently fast, thereby conforming to typical conditions of 

aqueous mineral carbonation. These results suggest that MgCl2 has the potential to 

contribute to the intensification of the mineral carbonation reaction. 

The effect of MgCl2 on the mineral carbonation of AOD stainless steel slag was 

tested in both mechanically mixed and sonicated reaction systems. The addition of 

MgCl2 to mixer-only experiments resulted in reduced carbonation conversion at every 

reaction duration tested, indicating that it slows the reaction kinetics, proportionally to 

the additive concentration. In sonicated experiments, however, there was significant 

improvement in CO2 uptake with the addition of MgCl2, increasing from 0.19 to 

0.27 g,CO2/g,slag (60 % of the theoretical capacity) after 240 min with 82 mM MgCl2. 

At the same time, the preferential formation of aragonite was detected (86 wt% of the 

total formed carbonates). Given the acicular crystal morphology of aragonite, and its 

resulting low packing density when formed as a precipitated carbonate layer that 

surrounds the unreacted particle core, it appears that the surface erosion effect of 

sonication, caused by cavitation, shock waves and inter-particle collisions, becomes 

enhanced under these conditions. This is evidenced in the noticeable reduction in the 

volume moment (D[4,3]) and surface area moment (D[3,2]) mean particle diameters 

after the carbonation reaction. These observations suggest that, in the conditions tested, 

the carbonation enhancement effect of MgCl2 is in fact not due to calcium leaching 

enhancement, but rather caused by its influence on mineralogical and microstructural 

properties. Under other processing conditions, however, the calcium leaching 

enhancement of MgCl2 may be better exploited and this can be the subject of future 

research. 
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Fig. 1. Self-regenerative cycle of MgCl2 as applied during carbonation of Ca(OH)2; adapted 

from Ceulemans (2011). 
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Fig. 2. Extent of calcium leaching from CaO (a), wollastonite (b) APC residue (c), AOD slag 

(d), CC slag (e) and BOF slag (f) as a function of HCl, MgCl2·6H2O (MCH) and NaCl 

additions, expressed on the basis of moles of added chloride; 1 g/100ml solids used. 
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Fig. 3. Calcium solubility from CaO (a) and other alkaline materials (b) as a function of amount 

of MCH added; and fraction of added Mg remaining in solution as a function of amount of 

MCH added to each alkaline material solution (c). 
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Fig. 4. Calcium solubilisation from CC slag as a function of: increasing solids concentration at 

fixed MCH to slag ratio (g/100ml units) and 24 hours duration; sequential leaching for 24 hours 

each batch with MCH to slag ratio of 4.0:5, and; leaching duration with MCH to slag ratio of 

0.8:1. 
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Fig. 5. Change of mineralogical composition of alkaline materials after leaching with MCH for 

24 hours using MCH to solids ratio of 4.0:5, determined by QXRD; blue solid lines represent 

original materials, and red dashed lines are leached materials (colour in electronic version); 

Ca(sol) is percentage fraction of calcium dissolved from solids; Mg,added(sol) is percentage 

fraction of added magnesium that remained in solution; changes in mineral composition of main 

dissolved, precipitated or enriched phases is shown (in wt% change and % change compared to 

original composition). 
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Fig. 6. CO2 uptake of carbonated AOD slag using mixer-only (a) and combination 

mixer/ultrasound (b) as a function of amount of MCH added and reaction time. 
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Fig. 7. Carbonate composition (a) and mean particle diameters (b) of carbonated AOD slag 

using mixer-only, combination mixer/ultrasound, with and without MCH addition, as a function 

of reaction time; results with varying MCH dosages were averaged to facilitate plotting. 
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Fig. 8. Morphology of carbonated AOD slag particles using mixer-only with MCH after 120 

(a,d) and 240 (b,e) minutes reaction time, and using combination mixer/ultrasound with MCH 

after 240 minutes reaction time (c,f). 
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List of Tables: 

 
Table 1 

Chemical composition (expressed as wt% oxides) of alkaline materials (in order of CaO 

content) determined by XRF (normalized to 100 wt% total; ≥ 1.0 wt% shown). 

 Al2O3 CaO Cl Fe2O3 K2O MgO MnO Na2O SO3 SiO2 TiO2 

CaO < 98.3 < < < 1.1 < < < < < 

AOD slag 1.0 56.8 < < < 7.5 < < < 32.5 < 

CC slag 1.1 52.0 < 1.3 < 9.9 < < < 27.5 < 

Wollastonite < 51.2 < < < < < < < 46.4 < 

APC residue 1.5 49.8 22.2 < 2.7 < < 10.9 6.4 2.9 1.1 

BOF slag 2.5 49.0 < 29.5 < 1.0 3.6 < < 12.4 < 

<: less than 1.0 wt%. 
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Table 2 

Mineral composition of alkaline materials determined by QXRD (wt% of crystalline total). 

Mineral name 
Chemical 

formula 
CaO Wollastonite 

AOD 

slag 

CC 

slag 

BOF 

slag 

APC 

residue 

Åkermanite Ca2MgSi2O7 nd nd 1.2 1.7 nd nd 

Anhydrite CaSO4 nd nd nd nd nd 12.5 

Bredigite Ca7Mg(SiO4)4 nd nd 24.1 6.7 nd nd 

Brucite Mg(OH)2 nd nd 0.2 0.0 1.0 1.1 

Calcium chloride hydroxide Ca(OH)Cl nd nd nd nd nd 12.3 

Chlorapatite Ca5(PO4)3Cl nd nd nd nd nd 15.7 

Clinoenstatite Mg2Si2O6 nd nd 1.9 10.7 4.9 nd 

Cuspidine Ca4Si2O7F2 nd nd 13.5 6.4 nd nd 

β-Dicalcium silicate Ca2SiO4 nd nd 7.7 7.1 19.4 nd 

γ-Dicalcium silicate Ca2SiO4 nd nd 28.9 43.8 3.5 nd 

Fayalite Fe2SiO4 nd nd 0.2 0.7 0.7 nd 

Ferrosilite (Fe
(II)

,Mg)2Si2O6 nd nd nd nd 1.0 nd 

Gehlenite Ca2Al2SiO7 nd nd 1.0 0.1 nd nd 

Halite NaCl nd nd nd nd nd 23.4 

Hematite Fe2O3 nd nd nd nd 8.8 nd 

Hydromolysite FeCl3·6(H2O) nd nd nd nd nd 2.4 

Iron Fe nd nd nd nd 0.4 nd 

Lime CaO 86.4 nd 0.4 0.4 12.3 2.2 

Magnetite Fe3O4 nd nd 0.7 1.0 1.0 nd 

Merwinite Ca3Mg(SiO4)2 nd nd 11.1 6.1 nd nd 

Periclase MgO nd nd 5.6 12.4 0.8 0.2 

Portlandite Ca(OH)2 13.6 nd 0.4 1.0 5.6 20.5 

Quartz SiO2 nd 9.3 0.9 0.4 1.2 0.0 

Srebrodolskite Ca2Fe2O5 nd nd nd nd 37.8 nd 

Sylvine KCl nd nd nd nd nd 6.4 

Tachyhydrite CaMg2Cl6·12H2O nd nd nd nd nd 3.4 

Wollastonite CaSiO3 nd 90.7 2.4 1.6 nd nd 

Wüstite FeO nd nd nd nd 1.6 nd 

Total crystalline 
 

100 100 100 100 100 100 

nd: not detected. 
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Table 3 

Geochemical modeling (Visual MINTEQ) results of the effect of MCH addition (81.65 mM) 

and calcite saturation on the CO2 solubility and H2CO3 dissociation; P(CO2) = 1 atm, T = 50 °C. 

Log activity (M) 
0 mM MCH + 

pure water 

81.65 mM MCH + 

pure water 

0 mM MCH + 

calcite-saturated 

81.65 mM MCH + 

calcite-saturated 

Ca
+2

 - - -2.496 -2.619 

CaCl
+
 - - - -3.127 

CaCO3(aq) - - -5.166 -5.166 

CaHCO3
+
 - - -3.288 -3.349 

CaOH
+
 - - -8.322 -8.383 

Cl
-
 - -0.959 - -0.962 

CO3
-2

 -10.175 -10.268 -6.167 -6.044 

H
+
 -3.998 -3.952 -6.002 -6.064 

H2CO3(aq) -1.711 -1.711 -1.711 -1.711 

HCO3
-
 -3.998 -4.045 -1.995 -1.933 

Mg
+2

 - -1.706 - -1.733 

Mg2CO3
+2

 - -10.091 - -5.919 

MgCl
+
 - -2.011 - -2.04 

MgCO3(aq) - -8.888 - -4.69 

MgHCO3
+
 - -4.664 - -2.578 

MgOH
+
 - -8.287 - -6.201 

OH
-
 -9.242 -9.289 -7.238 -7.177 

Total CO2(aq) -1.709 -1.708 -1.521 -1.465 

Concentration (M)    
 

Total CO2(aq) 0.0196 0.0187 0.0316 0.0387 
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