
Sheridan College Sheridan College

SOURCE: Sheridan Institutional Repository SOURCE: Sheridan Institutional Repository

Publications and Scholarship Faculty of Applied Science & Technology (FAST)

3-2012

The Severity of Undetected Ambiguity in Software Engineering The Severity of Undetected Ambiguity in Software Engineering

Requirements Requirements

Cristina Ribeiro
Sheridan College, cristina.ribeiro@sheridancollege.ca

Follow this and additional works at: https://source.sheridancollege.ca/fast_publications

 Part of the Computer Engineering Commons

Let us know how access to this document benefits you

SOURCE Citation SOURCE Citation
Ribeiro, Cristina, "The Severity of Undetected Ambiguity in Software Engineering Requirements" (2012).
Publications and Scholarship. 53.
https://source.sheridancollege.ca/fast_publications/53

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
This Conference Paper is brought to you for free and open access by the Faculty of Applied Science & Technology
(FAST) at SOURCE: Sheridan Institutional Repository. It has been accepted for inclusion in Publications and
Scholarship by an authorized administrator of SOURCE: Sheridan Institutional Repository. For more information,
please contact source@sheridancollege.ca.

https://source.sheridancollege.ca/
https://source.sheridancollege.ca/fast_publications
https://source.sheridancollege.ca/fast
https://source.sheridancollege.ca/fast_publications?utm_source=source.sheridancollege.ca%2Ffast_publications%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=source.sheridancollege.ca%2Ffast_publications%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.google.com/forms/d/e/1FAIpQLSf7q5WZp0i0L8SWABAz3ZpRCipBkE5zHDR2o3dFhtHvN8DaXA/viewform
https://source.sheridancollege.ca/fast_publications/53?utm_source=source.sheridancollege.ca%2Ffast_publications%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:source@sheridancollege.ca

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326253457

The Severity of Undetected Ambiguity in Software Engineering Requirements

Conference Paper · March 2012

CITATIONS

0
READS

16

1 author:

Cristina Ribeiro

University of Waterloo

16 PUBLICATIONS 59 CITATIONS

SEE PROFILE

All content following this page was uploaded by Cristina Ribeiro on 07 July 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/326253457_The_Severity_of_Undetected_Ambiguity_in_Software_Engineering_Requirements?enrichId=rgreq-9f685d855a0951924781f6e9ed774e73-XXX&enrichSource=Y292ZXJQYWdlOzMyNjI1MzQ1NztBUzo2NDU4NTEzMDczMjMzOTJAMTUzMDk5NDM1OTE3NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/326253457_The_Severity_of_Undetected_Ambiguity_in_Software_Engineering_Requirements?enrichId=rgreq-9f685d855a0951924781f6e9ed774e73-XXX&enrichSource=Y292ZXJQYWdlOzMyNjI1MzQ1NztBUzo2NDU4NTEzMDczMjMzOTJAMTUzMDk5NDM1OTE3NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9f685d855a0951924781f6e9ed774e73-XXX&enrichSource=Y292ZXJQYWdlOzMyNjI1MzQ1NztBUzo2NDU4NTEzMDczMjMzOTJAMTUzMDk5NDM1OTE3NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cristina_Ribeiro18?enrichId=rgreq-9f685d855a0951924781f6e9ed774e73-XXX&enrichSource=Y292ZXJQYWdlOzMyNjI1MzQ1NztBUzo2NDU4NTEzMDczMjMzOTJAMTUzMDk5NDM1OTE3NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cristina_Ribeiro18?enrichId=rgreq-9f685d855a0951924781f6e9ed774e73-XXX&enrichSource=Y292ZXJQYWdlOzMyNjI1MzQ1NztBUzo2NDU4NTEzMDczMjMzOTJAMTUzMDk5NDM1OTE3NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Waterloo?enrichId=rgreq-9f685d855a0951924781f6e9ed774e73-XXX&enrichSource=Y292ZXJQYWdlOzMyNjI1MzQ1NztBUzo2NDU4NTEzMDczMjMzOTJAMTUzMDk5NDM1OTE3NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cristina_Ribeiro18?enrichId=rgreq-9f685d855a0951924781f6e9ed774e73-XXX&enrichSource=Y292ZXJQYWdlOzMyNjI1MzQ1NztBUzo2NDU4NTEzMDczMjMzOTJAMTUzMDk5NDM1OTE3NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cristina_Ribeiro18?enrichId=rgreq-9f685d855a0951924781f6e9ed774e73-XXX&enrichSource=Y292ZXJQYWdlOzMyNjI1MzQ1NztBUzo2NDU4NTEzMDczMjMzOTJAMTUzMDk5NDM1OTE3NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Sentence Level Fact Based Search Engine: News Fact Finder

Cristina Ribeiro
Computer Science

University of Waterloo
200 University Avenue

Waterloo, Canada
cribeiro@uwaterloo.ca

Ricardo Salmon
Computer Science

University of Waterloo
200 University Avenue

Waterloo, Canada
rsalmon@uwaterloo.ca

Swathi Amarala
Computer Science

University of Waterloo
200 University Avenue

Waterloo, Canada
samarala@uwaterloo.ca

Christina Hamada
Computer Science

University of Waterloo
200 University Avenue

Waterloo, Canada
chamada@uwaterloo.ca

Abstract

Users searching the Internet for news are not able to
find relevant fact-based results for certain queries using
the major search engines. Queries that require exact
substring matching in order to obtain very relevant
results are not currently possible. Furthermore, search
engines do not discriminate in returning results that are
opinions and not quantifiable facts. Our sentence level
search engine, News Fact Finder, is designed using suffix
arrays, filters out opinions, and produces very relevant
results that are attractive to users. The News Fact Finder
produces a 73% success rate of providing relevant fact
based results.

Keywords: Heuristic Optimization and Search, Sentence
Level Search Engine, Suffix Arrays, Natural Language
Processing

1. Introduction

Even though a sentence level search is feasible in
practice, it is believed that current document level search
engines, such as Google, cannot be outperformed.
However, we find a few weaknesses in the top search
engines used that can be addressed by sentence level
search. Sometimes these engines will return a result that
contains all of the specified keywords, but the keywords
are not closely related to each other, and thus the
document is not relevant to the intended search. Also,
these engines fail to find long queries within quotes,
unless the quotes contain well known text, such as that of
a Shakespeare play. Otherwise, it will return, “No results
found”, even though such text exists on the web.
Furthermore, the results it suggests without quotes are
most usually not relevant. Searching at the sentence level
would provide these additional benefits to search.

However, large search engines do not implement
sentence-level search because there is no fast and easy

way to index and search over sentences, as there is for
words with an inverted index. We believe that the best
way to implement sentence-level search is with suffix
arrays that excel at exact substring search. However, each
sentence would have to be searched each time a query is
made; this search is not scalable over a large web-sized
corpus. Therefore, we focus our search engine on a
smaller subsection of the web.

The idea behind sentence level search is if all the
query words are in the same sentence, that result is more
likely to be relevant than a result containing the query
words in different parts of the text. Taking this into
consideration can enhance the precision of the results set
without affecting sensitivity. Generally it is hard to
increase the specificity of a search without decreasing the
sensitivity and thus losing a number of relevant results.
Sentence level search is proposed as a way to overcome
this problem.

Currently none of the major search engines in use are
implemented using sentence level search. Instead they
have inverted indexes, used to search for documents that
match the user’s query. We are of the opinion that
sentence level search could be used in certain contexts to
produce better results than inverted indexed search
engines. The difference between the two methods is in the
unit used in searching. For an inverted index, the unit is a
document, and for sentence level search, the unit is a
sentence.

This paper outlines some current examples of sentence
level, and opinion based search engines in section 2. The
algorithm of a News Fact Finder sentence level search
engine is discussed in section 3. Section 4 describes the
methodology. The results are shown in section 5.
Conclusions are listed in section 6 and future work is
discussed in section 7.

2. Background

There are many different sentence based search
engines. Relemed [1] is a sentence level search engine for

368IEEE IRI 2010, August 4-6, 2010, Las Vegas, Nevada, USA
978-1-4244-8098-2/10/$26.00 ©2010 IEEE

MEDLINE, which is a database of over 15 million
biomedical article citations. Because of the large size of
the corpus, it is common for queries to return extraneous
results using traditional document level search techniques.
Relemed is the first to explore sentence level searching.
Like many other search engines, Relemed uses the
Unified Medical Language System to automatically map
terms to keywords in order to improve the sensitivity of
the search. Relemed uses the relevance metric in
conjunction with sentence level search to rank results.

Two case studies were conducted to compare
Relemed’s and PubMed’s results. These preliminary
studies found that Relemed and PubMed returned the
same number of results, and that Relemed displayed a
high number of relevant results in the first few pages,
with over 98% precision [1]. Relemed also was shown to
rank false positives lower. Since PubMed posts results
chronologically, the systems cannot be compared on this
level. However, Relemed was successful at accomplishing
its goals. These results show the promise of sentence level
search to improve precision and ranking of search queries.

AnswerBus is an open-domain natural language
question answering system based on sentence level web
information retrieval [2]. It accepts users’ natural
language questions. Based on the user’s question,
AnswerBus selects two or three search engines from
among the five and forms search engine specific queries
based on the question. AnswerBus then contacts the
selected search engines and retrieves documents at the top
of the hit list. It then extracts the sentences that might
potentially contain answers from the documents. It ranks
the documents and returns the top choices with contextual
URL links to the user.

TREC-8’s 200 questions were used to evaluate
AnswerBus’ question answering performance, and also its
performance was compared to four other similar question
answering systems. The rate of correct answers returned
to TREC-8’s 200 questions is 70.5 % and the average
time taken to respond to a question is seven seconds. The
performance of AnswerBus in terms of accuracy and
response time is better than other similar systems.

AnswerFinder is a general-purpose web-based
question answering system aimed at answering simple
questions that require a single fact as an answer.
AnswerFinder’s system consists of three main phases:
determining the expected answer type, using a search
engine to find relevant documents, and a final stage in
which possible answers are located within the relevant
documents [3]. All the retained entities are grouped to
form answer groups based on the equivalence test. Two
answers are said to be equivalent if all the words
(excluding stop words) in one are present in the other.
These answer groups are then ordered based on the
number of occurrences of each answer group within the
documents that were processed and on the rank of the
document in which the answer was first found.

Precedence is given to those answers found in documents
regarded as highly relevant by the information retrieval
system. This ordered list is then returned to the user.
AnswerFinder’s performance was evaluated using the
TREC 2002 question set. AnswerFinder was capable of
correctly answering approximately 26% of the questions
[3].

An opinion search engine [4] uses sentences in open
domain topics. Their search engine involves extracting
opinion sentences from Japanese blog pages that are
relevant to a user’s query. As the size of the web grows,
more content is user generated, in the form of blog pages,
emails, and social networks. The motivation behind these
types of search engines would be to infer users’ opinions
on a product, users’ belief regarding a topic, or users’
shifting trends. This knowledge can also be informative
for decision-making tasks.

Opinion sentences are classified based on the
particular type of opinion, i.e., sentiments, neutral
opinions, requests, advice, or thoughts. Each opinion
sentence is identified if an opinion clue is explicitly
found, i.e., “I am glad” from the sentence “I am glad to
see you” or “extremely” from “They played extremely
well.” Sentences containing the exclamation mark and
conditionally subjective phrases are also identified as
opinions. These clues are encoded as features in a Support
Vector Machine to perform the classifying if a sentence is
opinionated.

Opinion clues are also augmented with semantic
categories to compensate relations between co-occurring
words phrased in sentences. The semantic categories
encode a hierarchal relationship between words. The
evaluation consists of collecting pages from the web and
having three judges manually labeling sentences they
judge to be opinions. To illustrate the difficulty of the
task: the sentences determined to be opinions if at least
one judge deemed the sentence to be an opinion. All three
judges only agreed that a sentence is an opinion 22% of
the time [4]. In terms of performance, the system was
tested against (a) the baseline method, (b) a proposed
model with expression clues for opinion extraction, and,
(c) the effects of adding semantic categories. The results
show that the opinion sentence search engine
outperformed the baseline method on the test criteria of
precision, recall and accuracy.

3. Algorithm

We investigated sentence level search engines further
than current research available and their benefits to
improving web searches. We implemented a sentence-
level search engine, called News Fact Finder, which
indexes sentences using suffix arrays rather than the
keywords. A Suffix array is a data structure containing
all pointers to the text suffixes, which are sorted in

369

lexicographical order [5-9]. Each suffix is a string starting
at a particular position in the original text and ending at
the end of the text, as seen in Figure 3.1. Given keywords
as inputs, we rank and return documents based on the
exact substring match of the keywords in the same
sentence.

Figure 3.1 Suffix Array

A natural progression would be to classify sentences

into different categories. Recent work by [4] has shown
success in using sentence level search to classify
sentences based on types of opinion from the author. The
classes used were specific to a Japanese Blog portal.
However, we classify sentences based on their functional
and structural form to better suit the needs of users. For
example, if we know the user asked a question in the
query, then it would not make sense to return a sentence
that we know is a question in the answer set. In order to
test our search engine, we would like to run it against a
large corpus, and compare it with manually ranked human
queries. We believe that our system will be able to
successfully return pertinent facts relating to the users’
queries.

The implementation of the News Fact Finder system is
comprised of five components, which includes the
following: crawler, parser, index, query, and ranking. The
architecture is shown in Figure 3.2.

Figure 3.2 News Fact Finder architecture

Since sentence level search is performed, each html

document is parsed into sentences. The parser applies the
black list, verb list and subjective word list to the parsed
documents. The patterns to search and eliminate the text
are compiled using regular expressions.

Then the text is split into sentences on the occurrence

of break. A list of prefixes correctly classifies the
sentences. The last word of each sentence is checked
against the prefixes in this list: if a match is found, then
this sentence is combined with the next sentence.
Sentences are also not broken down on the occurrence of
abbreviations such as U.S., R.S.V.P, etc., or on the
occurrence of middle initials such as Steve F.
McCormick, see Algorithm 1.

Algorithm 1 Pseudocode

Various lists are then applied to the parsed documents

from the first stage. In order to ensure that our system
retrieves the most relevant information and only fact
based results, we created a set of lists to accomplish this.
We developed three lists: a verb list, a black list, and a
subjective list. Each list is used in different components of
the architecture.

The second stage of the parser reads each sentence
from the parsed documents, splits the sentence into a list
of words, eliminates all the words from the black list
occurring in the sentence, and converts all the verbs into
their root forms. It then checks to see if any word in the
sentence is from the subjective list. If the sentence
contains a word from the subjective list, then the parser
eliminates the sentence in total. Otherwise the parser joins
all the words back to form a sentence, and writes the
sentence to a text file.

The reason we convert various verb forms to the root
form is to have uniformity of verbs throughout the
document, and hence retrieve all the possible relevant
sentences to a user’s query. The verb list format can be
found in Table 3.1.

Table 3.1 Verb list for document uniformity

Non Base Form Verbs Verb Base Form
Believed Believe
Believes Believe
Believing Believe

The black word list is used by the parser to eliminate

common words found in the English language that are not
relevant to the topic, such as the word “the.” This includes
definite and indefinite articles, prepositions, some verbs,

function search(query)
words = parseQuery(query)
If empty?(words)
 return Nothing
keywords = applyWordList(words)
return sentence if it contains a keyword
matches = matchingSentences(keywords,index)
longer sentences with matching keywords score greater
documents with more results have matching sentences score
greater
list = rank(matches)
for each sentence in list

show k proceding and k subsequent sentences
 return result

370

and conjunctions. The black list used in the News Fact
Finder consists of 131 words.

Originally, we were going to create a list of nouns to
include instead of using a black list to exclude words. It is
much more efficient and effective to use a black list
instead. The time required creating a black list in
comparison to a list of all possible nouns that might occur
is considerably less. This translates into another reason,
which is that the algorithm will be much more efficient in
parsing out the black list words. Searching through the list
is much quicker due to its size, which is considerably
smaller than that of a complete noun word list.

The subjective word list contains words in the English
language to describe a topic that suggests an opinion or a
point of view. The word list was created using a
subjectivity clues database, which contains subject words
and classifies them by type, either weak or strong. We
created a list containing only the strong subjective words,
to ensure that the system is not too restrictive in the
sentences it eliminates as opinions. The weak subjective
terms do not necessarily apply in all cases and contexts.
Even with natural language processing it is difficult to
determine when the weak subjective words comprise an
opinion versus a fact. Despite the fact that we only
include strong subjective words, our list is quite lengthy.
The exhaustive list contains 4745 words. By using this list
in our system, we are testing a brute force approach to
classifying sentences as facts or opinions.

At this point, each document has been parsed into
sentences, with blacklisted words and sentences
containing opinions removed. We then build an index of
sentences. We decided to create a suffix array for each
sentence, because we wanted to be able to do substring
searching quickly. Building these suffix arrays can take a
long time, we initially create the index and the suffix
arrays, then write it into a file. Then when we search, our
search engine reads the index into memory from file,
without having to build the suffix arrays each time.
Because suffix arrays are not a common data structure, we
provide a custom implementation for our purposes.

The suffix array class stores two attributes: 1) the
sentence (which is actually a list of words in the
sentence); and 2) the suffix array. It contains functions to
build a suffix array given a sentence, and search the suffix
array for exact matches, given a string of one or more
words. It also has a function that returns a string of the
sentence and the suffix array, separated by the delimiter
“|”, which is how the suffix array is saved to disk.

The index builder reads in one document at a time and
turns each sentence into a suffix array, and also keeps
track of its document ID and sentence ID. Sentences that
are excluded from the final parsed documents because
they contain opinions are denoted by blank lines, and
although suffix arrays are not created for them, they are
still given sentence IDs, in order to trace them back to the
parsed documents and exclude them from being returned

in the results as neighboring facts. The suffix arrays are
stored in one list that is iterated through when searching.
Each unit of a document ID, sentence ID, and suffix array
is stored as a tuple in the list.

When matches are found, we scan the original corpus
to find the matching sentence before filtering so it would
be still meaningful and comprehensible to the user. Even
by ranking by sentence length we get similar results with
little diversity in topics from the query. In addition, we
return sentences we considered as facts that are in close
proximity to the original matching sentence, i.e., k = 2 in
the preceding and the succeeding two sentences. This is
based on the locality principle; we assume related
information is closer in proximity on a page.

Based on studies by [11] 56% of news report articles
were judged to be objective. We consider k small since
we only wish to return relevant results that the user will
have time to read. Finally, documents are ranked by the
number of sentences that match the query. We assume
matched sentences are a good indicator of document
relevance to the user. If more sentences chance the answer
will be in those sentences or in close proximity.

4. Methodology

We performed crawling on the CNN website
extracting news article web pages for use in our corpus.
The corpus is 120 MB in size, consisting of 4756
documents. The articles span from November 6th to
December 3rd, 2009. This is a reasonable corpus size for
experimentation of our system, as it pertains only to
reputable news sites and not the entire Internet.

The experiments conducted consisted of testing the
News Fact Finder with a set of 26 queries, based on 5
different articles from different topic areas found in the
corpus. The topics included politics, health,
entertainment, sports, and opinions. Four judges were
assigned to read the selected articles and classify the
sentences as either fact or opinion. We then combined the
classifications from all of the judges. There were many
ambiguous cases, which were difficult to classify. It was
agreed that syntactic analysis of the sentences produces
far more valuable results to the user. For example: the
user may consider certain expert opinions as facts as some
experts may be more experienced, established in the field,
or more credible. In such cases, the News Fact Finder
leaves the decision up to the user’s discretion by
including those sentences in the results set.

The News Fact Finder is optimized for sentence level
search queries. It returns exact substring matches from the
users parsed query. The exact substring matches are then
classified as facts or opinions, and the opinions are
removed. For the experiment, we consider a sentence to
be an opinion if one or more judges classified the
sentence as an opinion. In cases where all of the judges
classify the sentence as a fact, the sentence is considered a

371

fact. This method of classification was used in
experiments conducted in [4].

We expect that our system will return a relevant
results set to the user based on our system’s heuristics. It
is preferred that more information be provided to the user.
As a result, in the cases where doubt exists, we leave it up
to the users to interpret whether the sentence is a fact or
an opinion.

5. Experimental results

Each query’s results were compared to the judges’
classification of each sentence in the selected articles. If
all of the sentences classified as facts were displayed in
the results set, and none of the sentences classified as
opinions were displayed to the user, this would be
considered a successful result. Any results returned
pertaining to other articles that were not classified by the
judges were analyzed for subjective keywords. If one or
more such words exist in the sentence, this would indicate
that the sentence is an opinion and therefore should not be
displayed. This would result in a false positive result. The
overall results obtained are very promising. The News
Fact Finder returned 19 successful results and achieved a
73.08% success rate in the results returned to the user.
This can be seen in Figure 5.1.

Figure 5.1 Results of queries tested

The total number of queries tested was 26. These 19

successful queries fall into different categories: opinions
and facts. Opinion queries tested consisted of a sentence
that contained strong subjective words, such as “I think”.
It is expected that the News Fact Finder would not return
any results matching this query, as it should eliminate
these sentences and not index them. Fact queries tested
resulted in all fact-based sentences being displayed to the
user, with none of the opinion sentences displayed from
the related article. In Figure 5.2 the number of queries
tested from the different categories can be seen.

Figure 5.2 Frequency of query types

Of the 7 queries that the News Fact Finder did not
return correct results for, there are two types of errors
encountered. These errors are false positive and false
negative results. The false positive results case includes
opinion sentences appearing in the results set, as though
they were facts. These sentences were classified as
opinions by the judges. The false negative results case is
comprised of situations where the subjective word list was
too strict and classified facts as opinions. In these cases,
some of the expected fact based results were not returned
to the user. The frequency of each result type is shown in
Figure 5.3.

Figure 5.3 Frequency of result types

Our success rate is quite high in comparison to the

results achieved by the similar sentence level search
engines discussed in section 2. Answer Finder achieved a
26% success rate and Answer Bus achieved a 70%
success rate. While the opinion based blog had only
achieved judges’ consensus on opinions versus facts 22%
of the time. Each query was processed in roughly 0.2
seconds on our system. News Fact Finder performed
considerably better than AnswerBus, which performs
better than other similar systems, has an average query-
processing rate of 7 seconds. We feel the response time
can be further improved by using more optimal data
structures.

One of each of the various types of results obtained
from the News Fact Finder is listed in this section. We
selected tests that show different cases, and listed them
here.

The first query we would like to discuss is “Fantastic
Mr. Fox”, where no results were returned. This was a
successful test as one of the judges classified the sentence
containing this substring as an opinion. Therefore News
Fact Finder should not display this sentence in the results.

The second query “a Christmas carol”, was also a
successful test, the results were returned relating to the
movie “A Christmas Carol”, including previous success,
current success, ranking among movies, and a comparison
to other debuts in the past. These are excellent results that
a user could use to determine whether or not to watch the
movie.

The third query run was “French President Nicolas
Sarkozy”. This was a success, nine facts are returned
from three different articles. Each of the facts is relevant
to the user’s query. Each of the sentences displayed in the

372

results were all classified as facts by each of the judges.
Another Query run was “I think”, no results were

returned. All of the judges classified the sentence
containing this substring as an opinion; therefore News
Fact Finder should not display this result.

6. Conclusions

We have implemented a News Fact Finder System,
which conducts sentence level searching through
reputable online news media sites. The system also
removes opinions and extracts fact based sentences. This
is a difficult problem in the context of our system. As we
are dealing with only reputable news media web sites, we
must also take the style of writing into account. One of
the challenges we found was that articles are not written
in a fashion where opinions are clearly marked as such,
and as such, it can be difficult to classify sentences into
opinions or facts.

We have used a subjective word list to classify
opinions. Perhaps the subjective list is too strict in some
cases, and returns false negatives. This could be avoided
altogether with the use of natural language processing in
addition to the subjective word list. This would allow for
some cases to include the sentence as a fact and exclude it
in others, providing more useful results to the user.

7. Future work

There are a few areas of possible future work. We
would like to offer user suggestions when few or no
results are shown, show the results for corrections to the
query such as play off versus playoff. Other areas include
changing the ranking, including a list of concepts, and
paging similar facts.

A user always expects to read news about the latest
happenings of an event. Hence it is best to rank by date.
Higher ranking should be given to more recent articles
and relatively lower ranking should be given to older
articles. In this way it can be made sure that up-to-date
information is provided to users, and higher user
satisfaction can be obtained.

A list of concepts of verbs can be built and
incorporated at the parsing stage. The basic idea behind
this is to replace all occurrences of similar verb
concepts/senses by a single base verb form. For example,
all occurrences of the verb “buy” and its various forms
can be replaced by the verb “purchase” both in the
documents and in the query. This ensures that all the
relevant results to a user’s query are retrieved resulting in
an increase in the accuracy of the system.

Similar facts from various pages can be grouped
together. This aids in providing information from
different aspects to the user. For example if a user is
querying about “H1N1 vaccination”, there are news

articles mentioning that the vaccine has had a good effect,
and other news articles about the severe negative side
effects. Hence if we group similar facts together, we will
be able to cover the news from a wider perspective.

8. References

[1] M.S. Siadaty, J. Shu, and W.A. Knaus, “Relemed: sentence-
level search engine with relevance score for the MEDLINE
database of biomedical articles,” BMC medical informatics and
decision making, BioMed Central Ltd, London, United
Kingdom. 2007, vol. 7, no. 1, 2007, pp. 1.

[2] Z. Zheng, “AnswerBus question answering system,”
Proceedings of HLT 2002, Second International Conference on
Human Language Technology Research, 2002, San Francisco,
CA, USA, pp. 399-404.

[3] M.A. Greenwood, “AnswerFinder: Question Answering
from your Desktop,” Proceedings of the 7th Annual Research
Colloquium of the UK, Special Interest Group for
Computational Linguistics. January 6-7, 2004, Birmingham,
UK, pp. 75-80.

[4] O. Furuse, N. Hiroshima, S. Yamada, and R. Kataoka,
“Opinion sentence search engine on open domain blog,” In
Proc. of the 20th Int’l Joint Conf. on Artificial Intelligence
(IJCAI-07), January 2007, Hyderabad, India, pp. 2760-2765.

[5] V. Makinen, and G. Navarro, “Succinct suffix arrays based
on runlength encoding,” Lecture Notes in Computer Science,
2005, Finland, vol. 3537, 2005, pp. 45-56.

[6] E. M. McCreight, “A space economical suffix tree
construction algorithm,” Journal of the ACM (JACM), 1976,
vol. 23, no. 2, pp. 262-272.

[7] E. Ukkonen, “On-line construction of suffix trees,”
Algorithmica, 1995, vol. 14, no. 3, pp. 249-260.

[8] U. Manber, and G. Myers, “Suffix arrays: A new method for
on-line string searches,” Society for Industrial and Applied
Mathematics, Philadelphia, 1989, PA, USA, pp. 319-327.

[9] J. Wiebe, T. Wilson, and M. Bell, “Identifying collocations
for recognizing opinions,” Proceedings of the ACL 2001
Workshop on Computational Natural Language Learning
(ConLL), July 6-7, 2001, Toulouse, France, pp. 24-31.

8. Acknowledgements

We would like to acknowledge Natural Sciences and
Engineering Research Council (NSERC) of Canada, for
funding this work.

373

View publication statsView publication stats

https://www.researchgate.net/publication/326253457

	The Severity of Undetected Ambiguity in Software Engineering Requirements
	SOURCE Citation

