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ABSTRACT 
Wind farm design deals with the optimal placement of 

turbines in a wind farm. Past studies have focused on energy-
maximization, cost-minimization or revenue-maximization 
objectives. As land is more extensively exploited for onshore 
wind farms, wind farms are more likely to be in close 
proximity with human dwellings. Therefore governments, 
developers, and landowners have to be aware of wind farms¶ 
environmental impacts. After considering land constraints due 
to environmental features, noise generation remains the main 
environmental/health concern for wind farm design. 
Therefore, noise generation is sometimes included in 
optimization models as a constraint. Here we present 
continuous-location models for layout optimization that take 
noise and energy as objective functions, in order to fully 
characterize the design and performance spaces of the optimal 
wind farm layout problem. Based on Jensen¶s wake model and 
ISO-9613-2 noise calculations, we used single- and multi-
objective genetic algorithms (NSGA-II) to solve the 
optimization problem. Preliminary results from the bi-
objective optimization model illustrate the trade-off between 
energy generation and noise production by identifying several 
key parts of Pareto frontiers. In addition, comparison of 
single-objective noise and energy optimization models show 

that the turbine layouts and the inter-turbine distance 
distributions are different when considering these objectives 
individually. The relevance of these results for wind farm 
layout designers is explored. 

INTRODUCTION 
 Wind energy installation has experienced a tremendous 
increase in the past decade. The Canadian Wind Energy 
Association envisioned Canada to have 55 GW of wind energy 
installation by 2025, equivalent to 20% of the countr\¶s 
energy needs [1]. The United States has seen annual growth 
between 5 and 10 GW since 2007, with a total installed 
capacity of 43GW through the 3rd quarter of 2011 [2]. 
 Wind energy is still facing resistance in North America 
due to health and environmental concerns. The government of 
Canada has published a series of reports regarding noise 
generation of wind farms [3±5]. Regardless of whether wind 
farm noise has negative health impact, it concerns both the 
developers and the residents near wind farms. Therefore noise 
is an important factor in wind farm design. 

Due to the aerodynamic nature of both energy capture and 
noise generation, these are usually competing factors, meaning 
that the more energy we capture with a given set of wind 
turbines, the more noise it might generate. Many aspects affect 
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the noise generation of wind turbines. On one hand, operation 
of turbine¶s mechanical components produces noise. On the 
other hand, wind flowing through turbine generates another 
type of noise. The wake interactions between turbines can also 
change noise level and propagation pattern. Therefore, the 
faster turbines operate (higher rpm), the more noise they 
generate. An indirect effect appears when the number of 
turbines increases in a given area with the goal of increasing 
the energy capture. In such situations, the average expected 
distance between the turbines and a noise receiver is bound to 
decrease, thus increasing the sound level measured at the 
receiver¶s location.  

Traditionally, wind farm design engineers and researchers 
have included noise as a constraint in their optimization model 
[6]. This means that when they considered noise as a design 
factor, they usually tried to find the wind farm design with 
maximum energy (or minimum cost per energy), while 
keeping the noise levels below a certain threshold. There are a 
few potential limitations to this approach. If the optimization 
is done manually, as it is typically done in the wind energy 
industry, wind farm design is an iterative and lengthy process, 
involving stages of layout design for maximum energy, checks 
for compliance with environmental restrictions (e.g. noise), 
and refinement of the layout based on infrastructure 
considerations. Also, feasible solutions might be scarce, if 
they exist at all, so that it takes a long time to find an 
acceptable layout, or decide that the project is not profitable. 
Feasible solutions, in the optimization sense, refer to the 
layouts that satisfy all environmental, infrastructure and 
financial constraints, including the noise regulations. On the 
other hand, if optimization relies on computer, designers will 
locate feasible solutions faster, but might focus only on one 
final solution without getting any insights on the design trade-
offs, sensitivity, robustness and other acceptable design 
alternatives. In summary, there is a need for a computational 
approach for optimization of noise-constrained wind farm 
layouts that is capable of (a) finding the optimal solution, as 
well as a set of feasible solutions with acceptable performance, 
(b) elucidating the design trade-offs and sensitivity of the 
solution to changes in the position of individual turbines. 
 We propose a different approach to this problem. Our 
approach considers both noise minimization and energy 
maximization as objectives, using a stochastic optimization 
algorithm, namely Genetic Algorithms. This way, we hope to 
identify whether noise and energy generation are truly 
competing factors; and if so, what the relationship between 
noise and energy is. In addition, by analysing the populations 
of solutions generated by the Genetic Algorithm, we can gain 
insights into characteristics of layouts that are associated with 
good performance. In other words, our goal in using this 
approach is to understand the trade-off between energy and 
noise in wind farm layout design and to assist engineers in 
formulating design guidelines. 

Previous Work 
Among the recent research work in wind farm design, we 

are most interested in developments in wind farm optimization 
models and algorithms. In the following, we describe briefly 
some developments on these two aspects. 

The first study in wind farm layout optimization can be 
traced back to Mosetti et al. [7], who used a 2.0 km by 2.0 km 
square to represent the available land. This land was divided 
into a 10 by 10 grid of square cells, each cell with the side 
length of five turbine diameters. Turbines could only be placed 
in the centre of a grid, thus enforcing design guidelines that 
prescribe minimum separation distance between turbines. The 
authors captured turbine interactions with the Jensen wake 
model [8], which considers a linearly-expanding wake, 
resulting in a downstream wind speed that is a non-linear 
function of downstream distance. As optimization algorithm, 
the authors used Genetic Algorithms [9], which has been by 
far the most commonly used method in the literature. Grady et 
al. [10] further explored GAs as a solution method, using 
larger populations and number of generations than previous 
work, thus leading to better solutions, Emami et al. [11] and 
González et al. [12] have further improved over Mosetti¶s 
approach. 

More comprehensive models have been proposed 
recently. Kusiak and Song [13] solved the turbine layout 
problem with a continuous-location model, in which turbines 
were allowed to reside anywhere within the wind farm. 
Minimum turbine proximity and wind farm boundary were the 
only constraints, which were then converted into a second 
objective function. Réthoré et al. [14] explored optimization 
for offshore wind farm, including an improved cost model in 
the calculation of the unit cost of energy, which they used as 
the optimization objective. Saavedra-Morreno et al. [15] 
incorporated a wind regime that considers spatial difference in 
wind speeds. In other words, instead of using a single wind 
speed/direction, or a statistical distribution of wind speed of 
directions, their model considers the spatial distribution of the 
wind field. 

Réthoré et al. [16] also used a discrete-location approach. 
However, they employed a two-stage model with increasing 
resolution of the wind farm. In the second stage, the authors 
also included more comprehensive cost and revenue models, 
and increased the number of directions and speeds for wind 
resources. Chowdhury et al. [17], [18] investigated how the 
key factors, such as land configuration, influence the wind 
farm performance. Finally, another recent development on the 
modelling side is the work of González et al. [12], who 
include infrastructure considerations in the layout design, such 
as the cost of foundations and the cost of auxiliary inner roads 
connecting turbines.  

On the algorithmic side of the problem, different methods 
have been explored. Metaheuristics such as Genetic 
Algorithms and Particle Swarm Optimization [19] have been 
extensively applied to the wind farm optimization problem [7], 
[10], [20], [21], with success. Approaches that combine 
deterministic search and stochastic search, such as the 
Extended Pattern Search (EPS) approach of Du Pont and 
Cagan [22] have also been proposed. In EPS, each turbine in 
the layout is moved according to a pre-established pattern, 
with a step size that decreases as the optimization progresses. 
Turbine moves that lead to an increase in energy production 
are kept, while those that do not are discarded. This heuristic 
strateg\¶s rejection-sampling approach is guaranteed to 
improve upon the initial solution, although there are no 
guarantees of global convergence. 
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Donovan [23] [24] and Fagerfjäll [6] explored Mixed-
Integer Programming (MIP) models, and solved these 
problems with traditional branch-and-bound methods. Unlike 
GAs and other metaheuristics, MIP solvers are included in 
many operations research software packages, e.g., IBM ILOG 
CPLEX, and have well-studied convergence behaviours. 
However, these solvers are not always suited for non-linear, 
non-convex optimization problems, as the wind farm layout 
problem is. In fact, both Donovan and Fagerfjäll used an 
approximate, simplified calculation of energy capture in order 
to justify their use of MIP solvers. 

Common threads across all these applications are: (a) 
similar objective functions: maximum energy capture, 
minimum cost of energy, or a weighted sum of energy capture 
and cost, (b) a pre-determined number and type of turbines, 
and (c) minimum turbine proximity and convex-polygonal 
wind farm boundaries as the only optimization constraints. 

On a broader scope, in our future work we intend to solve 
the full-scale, comprehensive wind farm layout optimization 
problem, including major aspects of the problem: Energy 
capture, environmental impact and cost. As a first step towards 
that vision, in this paper we will focus on understanding the 
energy-noise trade-off in wind farm layout design. 

The remainder of this paper is organized as follows. In the 
following section, we describe the models we used to predict 
energy capture and noise generation/propagation in the wind 
farm. Then, we present a brief description of the optimization 
method used in this work, namely the multi-objective genetic 
algorithm with fitness assignment by non-dominated sorting. 
Then, we present our test case, followed by our results in two 
aspects: (a) validation of our models against industrial-grade 
software, and (b) single- and multi-objective optimization. We 
close with our concluding remarks and a discussion of future 
work. 

WIND FARM MODELLING 

Wake Modelling 
An analytical, closed-form wake model is used to quantify 

the aerodynamic interaction between turbines. This model was 
first proposed by Jensen [8], who developed it by considering 
that momentum is conserved within the wake, and that the 
wake region expands linearly in the direction of the flow, as 
shown in Fig. 1. 

 
Fig. 1. Schematic representation of 

Jensen¶s Zake model. 

To determine the effective wind speed experienced by a 
turbine located within another turbines wake, the momentum 
balance equation can be written 

         ሺ   െ    ሻ  ൌ        (1) 
where rr is the turbine rotor radius, r1 is the radius of the wake 
at any position x measured downstream, uo is the free stream 
wind speed, ur is the wind speed immediately behind the rotor, 
and u is the speed of wake a downstream distance x. 

According to Bet]¶s theor\ [25], the wind speed 
immediately behind the rotor is approximately 1/3 of the free 
stream speed, and with the assumption of a linearly expanding 
wake, the downstream speed can be calculated as 
 

 ൌ    ൬ െ
 
 
ቀ  
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൰      (2) 

 
where rr is the turbine rotor radius, and r1 can be found from 
the following linear relationship representing the wake radius 
 

                ൌ                         (3) 
 

In Eq. (3), Į is the entrainment constant, also known as 
the wake decay constant, and is calculated (empirically) as  
 

               ൌ     

  ቀ    
ቁ
                     (4) 

 
where z is the hub height and zo is the surface roughness of the 
terrain, both in metres. Fig. 2 shows the variation of wind 
speed as a function of position along the wake¶s centerline. 
Note the nature of the decay in wind speed, and the rate at 
which it recovers its free stream value. 

 
Fig. 2. Wind speed along a single Zake¶s centerline, as a 
function of distance normalized with the turbine diameter. 

For turbines under the influence of multiple wakes, an 
effective wind speed can be calculated from the sum of kinetic 
energy deficits from upstream turbines. Note that this is a 
superposition approach that assumes that kinetic energy 
deficits can be aggregated. Although this is a simplification of 
the complex fluid dynamics involved in wake merging, this 
approach has been used extensively in previous work, 
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especially for optimization purposes, and it is still used in 
commercial software for wind farm design. For more complex 
models of wake dynamics, the reader can refer to [26]. The 
effective speed of the turbine inside n wake regions can 
therefore be expressed as 
 

 ൌ    ቈ െ ට∑ ቀ െ   
  
ቁ
 

 
       (5) 

 
Based on the effective wind speed at the turbine rotor, the 

power produced by the turbine can be calculated through the 
manufacturer-supplied power curve. Without loss of 
generality, in this work we follow previous work [7], [10], 
[22] and use a simplified e[pression for a turbine¶s power 
production: power is a simple continuous function of the local 
effective speed at hub height. Hence, when the farm is 
subjected to a uniform wind speed, the total power extracted 
from n wind turbines is expressed in the following equation:   
 

         ൌ  ∑
 
 
    

                        (6) 
 
Finally, we note that the annual energy production (AEP) 

of wind farm is defined as the integration of power production 
(kW) over time (h). This is an expected value of a random 
variable, as it is based on the probability distribution of wind 
speeds and directions. Hence, it is calculated as  

 
   ൌ       ∑ ∑ ∑                           (7) 

 
where i, j and k are indices over the number of wind 
directions, speeds and the number of turbines, respectively, 
     is the probability of wind coming at speed     from 
direction    at turbine location k, and      is the corresponding 
power generated by that turbine, in kW. Finally, 8766 is the 
average number of hours in a year, including leap years. 

Noise Modelling 
In the context of the ISO-9613-2 standard [27], receptors 

are the locations where the sound level is to be measured or 
predicted. In wind farm layout design, all human settlings 
located within the wind farm terrain, or within a certain 
neighbourhood, are considered receptors for noise calculation 
purposes.  

In a practical setting, the equivalent continuous downwind 
octave-band sound pressure level (SPL) at each receptor 
location is calculated for each point source, at each of the eight 
octave bands with nominal mid-band frequencies from 63 Hz 
to 8 kHz [27],  
 

  ൌ        െ                  (8) 
                          
where Lw is the octave-band sound power emitted by the 
source, Dc is the directivity correction for sources that are not 
omni-directional, A is the octave-band attenuation, and f is a 
subscript indicating that this quantity is calculated for each 
octave band.  

Several octave-band weightings are available to convert 
the sound pressure levels in Eq. (8) to an effective SPL. For 
wind farm layout applications, it is customary to use A-

weighted sound pressure levels [4]. The equivalent continuous 
A-weighted downwind sound pressure level at specific 
location can be calculated from summation of contributions of 
each point sound source at each octave band, 
 

     ൌ        ቄ∑ ቂ∑      ൣ  ሺ   ሻ   ሺ ሻ൧ 
   ቃ 

   ቅ (9) 
 
where n is the number of point sound sources, j is the index 
representing one of the eight standard octave-band mid-band 
frequencies, and the Af(j) are the standard A-weighting 
coefficients. 

The attenuation term (A) in Eq. (8) is the sum of different 
attenuation effects  

 
 ൌ                          (10) 

 
due to geometrical divergence (    ), atmospheric absorption 
(Aatm), ground effects (Agr), sound barriers (    ) and 
miscellaneous effects (     ). In this model, it is assumed that 
the attenuation due to sound barriers and miscellaneous effects 
are insignificant. Further detail of the calculation procedure 
can be found in the ISO 9613-2 document [27]. An illustration 
of the behaviour of the SPL as a function of (radial) distance 
with respect to the source is shown in Fig. 3. 

 
Fig. 3. Sound Pressure Level (A-weighted) as a 

function of distance from the source. 

OPTIMIZATION WITH GENETIC ALGORITHMS  
Genetic algorithms (GAs) [9] are probabilistic search 

algorithms inspired by the concept of natural selection and 
survival of the fittest. GAs search through the solution space 
by keeping a population (set) of solutions, which are ranked 
according to their fitness to solve the optimization problem 
(e.g. objective function values), and evolved through many 
generations. Due to their probabilistic nature, GAs are 
complete search methods, meaning that they can perform an 
exhaustive search of the input space if they are run for long 
enough, as long as the elitism and mutation operators are 
implemented with non-zero probability. In other words, GAs 
are guaranteed to converge to the neighbourhood of the global 
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optima, but they can take an arbitrarily large number of 
function evaluations (i.e. run time) to do so.  

An important advantage of GAs is that they do not require 
information about the gradient of the solutions, therefore 
avoiding problems with the and non-continuity of the solution 
space. This characteristic of GAs makes them well suited for 
the wind farm layout problem. On the other hand, GAs 
typically exhibit slow rates of convergence, thus increasing the 
computation cost and runtime of the optimization. In this 
work, we will not focus on improving the runtime behaviour 
and/or convergence rate of the algorithm. Rather, we will 
exploit its advantages to characterize the design space of the 
wind farm layout. 

There are several variants GAs that are suited for Multi-
Objective Optimization (MOO) problems, such as the 
Strength-Pareto Evolutionary Algorithm (SPEA, SPEA-2) 
[28], [29], and the Non-Domination Sorting Genetic 
Algorithm (NSGA, NSGA-II) [30], [31], among others [32]. 
Both SPEA-2 and NSGA-II have been shown to have similar 
performance over an array of test functions. This is expected 
since the algorithms are very similar, the main difference 
being the method used to convert multiple objective function 
values to a unique metric of fitness. In this work, we use the 
NSGA-II algorithm; its main steps are shown in Fig. 4. 

In the wind farm layout problem, npop initial layout 
patterns are generated randomly, and the corresponding 
objective values (energy generation, noise level) are evaluated. 
For each individual in the population, a rank is assigned 
according to their non-domination status (Non-Dominated 
Sort) and the distance between the solution and its neighbours 
in the objective space (Crowding Distance). In the Parent 
Selection stage, parents for the next generation are chosen 
based on the rank and the crowding distance via binary 
tournament. Solutions with lower rank values are preferred, as 
the ranks are assigned so that the current Pareto front has rank 
1. Crowding distance is used as a secondary fitness value to 
break ties when comparing solutions based on rank. After 
parents are selected, an offspring generation of size noff is 
created by crossover and mutation of the layout patterns of the 
parent generation. After evaluating the objective function 
values of the offspring population, it is merged with the parent 
population, and new rank and crowding distance values are 
assigned. Elitism is implemented by keeping only the best (i.e. 
rank 1) or the first npop-best solutions for the next generation 
(iteration) of the algorithm. The readers are referred to [31] for 
more details on the algorithm and its implementation. 

TEST CASES 
Fig. 5 shows  the problem scenario with WR1 ± a wind 

regime with only one direction of wind with uniform speed, 
following Mosetti et al. [7], Grady [10] and others. WR36 is 
the second set of cases with a more complex wind regime, as 
described by the probability distribution in Fig. 6. In previous 
work, a discretized version of the optimization problem was 
solved by defining a square grid over the wind farm terrain. In 
this work, we allow turbine positions to vary continuously, to 
more closely reflect the setting found in layout design practice. 
Note that we do not enforce proximity constraints in our 
optimization, as we would like to see them arise naturally 
from the optimization objectives. In previous work, proximity 

constraints were enforced, either directly as actual constraints, 
or indirectly using the discrete version of the problem. 

 
Fig. 4. Main steps in NSGAII. 

  
Following previous work, in our test case, the wind farm 

is a piece of flat terrain, with dimensions of 2.0 km by 2.0 km, 
subject to a uniform, unidirectional wind speed of 12 m/s. The 
characteristics of the wind turbines are shown in Table 1, 
corresponding to typical turbine models used in previous 
work. The noise generation levels were estimated from the 
values reported in [33] for turbines of the same rated capacity. 

In this work, we examined two optimization objectives. In 
the first case, we solved the maximum energy problem by 
finding the optimal location of 15, 30, and 45 turbines within 
the farm. Due to the stochastic nature of the optimization 
algorithm, we run this test case 10 times with different random 
seeds, and report our results either as the best solution out of 
the runs, the average behaviour, or the aggregate statistical 
behaviour for the 10 runs. 

Second, we solved for the optimal location of 15, 30, and 
45 turbines so that the maximum noise (SPL) at the boundary 
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of the wind farm is minimized. The rationale for solving the 
optimal layout problem by minimizing noise, without 
consideration of energy generation, is the observation that in 
practice noise generation is frequently an overriding concern 
to secure final approval of a wind project. Finally, the MOO 
problem is solved by maximizing energy generation and 
minimi]ing noise at the wind farm¶s boundar\, to illustrate the 
performance trade-off between these two objectives. 

 
Fig. 5. Schematic representation of test case. Four (4) 

hypothetical turbines are shown facing the wind. 

Table 1. Wind turbine parameters for the test case. 

Parameter Value 
Turbine Hub Height (z) 60 m 

Terrain Roughness Length (z0) 0.3 m 
Rotor Radius (rr) 40 m 

Power Curve         
Noise Generation (Lw) 100 dB 

 

 
Fig. 6. Distribution of wind speeds and 

directions for WR36 cases. 

Two wind regimes, WR1 and WR36, are tested 
separately. The first one has a uniform, single-direction wind 
pointing from south to north at 12 m/s. The latter is described 
by Fig. 6, which is a probability distribution for wind speed 
and direction mirrored from previous work [10], [22]. 

The next section presents our results. First, we comment 
on the validation of our implementation of the energy and 
noise models, by comparing our results with previous work 
and/or an industry-grade, open-source software for wind farm 
design and analysis, openWind [34]. Then, we present the 
trade-off surface for the multi-objective, energy-noise 
optimization. Finally, we compare our results for multi- and 
single-objective optimizations, and discuss the potential 
implications for wind farm layout design practice. 

PRELIMINARY RESULTS 

Validation of the Models  
The first task in our optimization effort was the 

implementation of the wake and noise models for a wind farm. 
We chose C++ for its computational efficiency. 

To validate our implementation, we evaluated the annual 
energy production (AEP) and maximum noise level of two 
layouts different number of turbines using (a) our 
implementation of the models, (b) openWind, an open source, 
industry-grade software. Table 2 shows the predicted energy 
performance according to these models, and their difference 
expressed as a percentage of the openWind prediction, which 
is assumed to be correct [35]. Fig. 7 shows a comparison of 
the predicted sound pressure level inside the wind farm terrain. 
After noting the slight difference in colour map, legend and 
scale, it can be seen that the predictions are essentially the 
same. 

Table 2. Comparison of Annual Energy 
Production (AEP) predictions between current 

implementation and openWind. 

 This work openWind Difference 

30 Turbines, WR1 132.38 
GWh 

132.17 
GWh 0.2% 

30 Turbines, WR36 225.88 
GWh 

230.48 
GWh 2.0% 

 

Optimization 
Once the models were validated, we focused our efforts 

on the optimization. Fig. 8 shows the spatial histogram of 
turbine locations for 10 runs of the multi-objective NSGA-II 
algorithm. In other words, the figure shows the relative 
frequency with which one or more turbines were placed on a 
given cell during the optimization process. Although our 
optimization approach considers turbine locations to be 
continuous variables, we have discretized the wind farm 
terrain in a grid of square cells with side lengths of 100 m. 
This aids in the presentation of the information, and makes 
comparisons with previous work easier in the future. 

A wind farm designer can extract valuable information 
from Fig. 8. For example, it is clear that, if the goal of the 
optimization is to minimize sound levels at the boundary of 
the farm, optimal layout configurations will tend to have only 
a few turbines near the boundaries, with a tendency to 
concentrate towards the centre of the farm. On the other hand, 
if the focus is on configurations with the maximum energy 
generation, turbines will tend to spread across the wind farm 
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terrain, including locations along the borders of the farm. In 
addition, by correlating both figures we can see which land 
cells are critical to achieve a design that both increases AEP 
and decreases SPL. In particular, there are several areas (e.g., 
the centre of Fig. 8(a)) with larger sampling frequencies, 
meaning that layouts with turbines in these locations tend to 
perform better according to our optimization objectives. 
Similar comments can be made for the optimization case with 
15 and 30 turbines (not shown). 

 
(a) 

 
(b) 

Fig. 7. Comparison of sound pressure level (SPL) 
field inside the wind farm: 

(a) openWind, (b) current implementation. 

  
Note that the spatial histograms used in this work are a 

novel way of presenting the optimization results. Their 
usefulness is based on the assumption that, due to the selection 
procedure implemented in the optimization algorithm, its long 
term sampling distribution provides information about the 
probability of a given location being part of an optimal layout. 
This is valuable information for the wind farm developers, as 
it quantifies the importance of a given piece of land for an 
optimal wind farm design. In other words, looking at the 
spatial histograms enables the designer to leverage data 
generated during the optimization process, rather than 
focusing only on the optimal solution. The reader is referred to 
[36] for previous work that has exploited the ensemble of 
intermediate solutions to extract additional information from 
the optimization process. 

Fig. 9 shows the (approximate) Pareto front for several 
numbers of turbines. First, note the convexity of the front, 
which was expected from the nature of the objective functions 

and their behaviour; compare, for example, Fig. 2 with Fig. 3. 
Further tests are underway to check if the observed 
discontinuities (³holes´) in the Pareto front are a feature of the 
problem or are due to a premature stop of the optimization. In 
any case, the approximation in Fig. 9 is sufficient to 
characterize the main features of the trade-off. Second, note 
that for the case with 15 turbines, the Pareto front does not 
spread along the horizontal (AEP) axis. This is expected, since 
in this case only 15 turbines are placed in the farm, and there 
are many possible layouts that will yield maximum energy, 
making it unlikely that AEP would be a limiting objective in 
terms of finding an optimal layout. In other words, it would be 
difficult to find layouts of 15 turbines with lower energy 
production, even if they are placed randomly. 

 

 
(a) 

 
(b) 

Fig. 8. Spatial histograms of turbine locations, multi-
objective (energy-noise) optimization (WR36, 45 turbines). 
Data corresponding to all turbines belonging to a layout 

that has (a) AEP > 3.2E4 GWh, or (b) SPL < 55 dBA. Darker 
shades indicate higher probability. 
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An interesting feature of Fig. 9 is the slope of different 
sections of the Pareto front, indicating regions of very high 
and very low sensitivity. For example, for the case with 30 
turbines, we can see that there is an array of layouts whose 
noise emissions would be below 50 dBA, while providing 
energy generations in the range 180-205 GWh. In other words, 
there are layouts with up to 10% difference in energy 
production but noise levels below 50 dBA. Similarly, there are 
many layout options that can produce close to the maximum 
energy (approx. 225 GWh) at a wide range of noise emissions 
(58-64 dBA). In addition, there is a short ³transition´ section, 
in which we can obtain improvements in energy generation 
with discrete increases in SPL. Finally, note that as more 
turbines are added to the wind farm, we observe more spread 
in energy and smaller spread in noise. From a designer¶s point 
of view, this indicates that when adding more turbines, layout 
designs becomes more important, as it is possible to find a 
wider range of AEP values for a given noise level constraint. 

 
Fig. 9. Pareto fronts for layouts 

with (a) 15, (b) 30, and (c) 45 turbines, WR36. 

As part of our continuing work, we are trying to study the 
fundamental differences between solutions based on energy 
maximization and those based on noise minimization only.  
For example, Fig. 10 shows the spatial histograms of turbine 
locations for these single-objective optimizations. Again, each 
cell in the wind farm terrain is considered a histogram bin, so 
Fig. 10 is generated by counting the number of times that a 
turbine was placed within the cell, based on the final 
population of the ten GA optimization runs. Note that in both 
cases shown in Fig. 10, all regions of the wind farm were 
sampled for potential turbine locations by the optimization 
algorithm, as indicated by absence of cells coloured in white. 
Although more tests are needed, we can notice differences in 
the spatial distribution of the turbines, from which we hope to 
extract design rules. 

As an additional characterization of the similarity of the 
solution and trade-offs, we tried to determine if a particular 
spacing between turbines would favour one optimization 
objective or the other. For this aspect of the study, we have 
created histograms of inter-turbine distances, measured in both 
down-wind and cross-wind directions for the WR1 case, 
shown in Fig. 11 and Fig. 12. Note that we did not implement 

any turbine proximity constraint in our optimization, precisely 
to be able to observe this behaviour. This preliminary results 
show that, compared with noise-minimization, energy-
maximization introduced more spread-out layouts, in both 
downwind and crosswind directions. As these are preliminary 
results, we are currently in the process of analysing the data 
further. 

 
(a) 

 
(b) 

Fig. 10. Spatial histograms of turbine locations, single-
objective optimization (WR36, 30 turbines). 

(a) Maximum energy, (b) Minimum noise. 
 

 CONCLUSION 
In this work, we have conducted single- and multi-

objective wind farm layout optimization studies, considering 
maximum energy generation and minimum noise levels at the 
boundary of the wind farm as objectives. 

After validating our models for energy and noise against 
industry-grade wind farm analysis software, we obtained the 
(approximate) Pareto frontier for the multi-objective problem. 
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In addition, we analyzed the results from the optimization 
process from a statistical point of view. By noting that the 
stochastic optimization algorithm (GA, NSGA-II) samples 
more frequently the regions of the input space that are 
associated with optimal solutions, we created spatial 
histograms of turbine locations sampled during the 
optimization. Finally, we created histograms of inter-turbine 
distances, with the goal of inferring design rules that can guide 
practicing wind farm engineers. 

Preliminary results of our study show a convex Pareto 
frontier with three distinct areas. First, there is a set of 
solutions that result in the largest energy values at a wide 
range of noise levels. Second, there is a set of solutions that 
provide low noise levels while resulting in a wide range of 
energy values. Finally, there is a small, intermediate region 
where a trade-off can be seen between noise and energy. In 
addition, we observed important differences in the Pareto 
fronts, regarding the relative importance of the energy and 
noise objectives in finding solutions for the layout problem. In 
particular, as more turbines are added to the farm, we observed 
a larger spread in annual energy production (AEP) values with 
a smaller spread in sound pressure level (SPL) values, 
indicating that a shift in design priorities may be warranted. 

 
Fig. 11.  Histogram of inter-turbine distances, 

downwind direction (WR1, 30 turbines).    

 
Fig. 12. Histogram of inter-turbine distances, 

crosswind direction (WR1, 30 turbines). 

Regarding the layouts associated with different areas of 
the Pareto frontier, our preliminary results show that the 
turbine layouts and the inter-turbine distance distributions are 
different when considering these objectives individually. Of 
particular relevance for wind farm designers is the 
determination of sampling frequencies for different areas of 
the wind farm terrain. Such analysis provides important 
information regarding the areas of the wind farm that are 
important for obtaining optimal layouts in the single- or multi-
objective scenarios. 

Our work will focus, in the immediate future, on 
comparing our results with previous work from Mosetti et al. 
[7], Grady et al. [10] and Du Pont et al. [22], and on extending 
our analysis to consider multiple wind directions, speeds and a 
wider range of numbers of turbines to fully describe the 
optimal design problem. Statistical analysis of the differences 
in the layouts and inter-turbine distances will also be 
conducted. 
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