
Sheridan College Sheridan College

SOURCE: Sheridan Institutional Repository SOURCE: Sheridan Institutional Repository

Publications and Scholarship Faculty of Applied Science & Technology (FAST)

3-2012

Pair-Wise Time-Aware Test Case Prioritization for Regression Pair-Wise Time-Aware Test Case Prioritization for Regression

Testing Testing

Prem Parashar
Sheridan College, prem.parashar@sheridancollege.ca

Arvind Kalia
Himachal Pradesh University

Rajesh Bhatia
Deen Bandhu Chotu Ram University

Follow this and additional works at: https://source.sheridancollege.ca/fast_publications

 Part of the Software Engineering Commons

Let us know how access to this document benefits you

SOURCE Citation SOURCE Citation
Parashar, Prem; Kalia, Arvind; and Bhatia, Rajesh, "Pair-Wise Time-Aware Test Case Prioritization for
Regression Testing" (2012). Publications and Scholarship. 69.
https://source.sheridancollege.ca/fast_publications/69

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
This Conference Paper is brought to you for free and open access by the Faculty of Applied Science & Technology
(FAST) at SOURCE: Sheridan Institutional Repository. It has been accepted for inclusion in Publications and
Scholarship by an authorized administrator of SOURCE: Sheridan Institutional Repository. For more information,
please contact source@sheridancollege.ca.

https://source.sheridancollege.ca/
https://source.sheridancollege.ca/fast_publications
https://source.sheridancollege.ca/fast
https://source.sheridancollege.ca/fast_publications?utm_source=source.sheridancollege.ca%2Ffast_publications%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=source.sheridancollege.ca%2Ffast_publications%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.google.com/forms/d/e/1FAIpQLSf7q5WZp0i0L8SWABAz3ZpRCipBkE5zHDR2o3dFhtHvN8DaXA/viewform
https://source.sheridancollege.ca/fast_publications/69?utm_source=source.sheridancollege.ca%2Ffast_publications%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:source@sheridancollege.ca

S. Dua et al. (Eds.): ICISTM 2012, CCIS 285, pp. 176–186, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Pair-Wise Time-Aware Test Case Prioritization
for Regression Testing

Prem Parashar1, Arvind Kalia1, and Rajesh Bhatia2

1 Computer Science Department, Himachal Pradesh University, Shimla, India
2 Computer Science Department, Deen Bandhu Chotu Ram University, Murthal, India

{prem.parashar,arvkalia,rbhatiapatiala}@gmail.com

Abstract. After maintenance, software requires regression testing for its
validation. Prioritization of test cases for regression testing is required as
software is tested under strict time and other constraints. A Pair-wise time-
aware Test Case Prioritization (PTCP) technique has been proposed in this
paper that determines the effectiveness of a test case on the basis of total
number of faults present in software, number of faults detected till time, and the
time of execution of different test cases. It selects that test case which
determines maximum new faults, not yet detected, within minimum time. Thus
prioritized test suite contains those test cases which are effective and tend to
minimize repetitive faults detection. Through two comparative studies, it has
been observed that with least wastage of time, the proposed technique
performed equally well as other two parallel prioritizing techniques, Average
Percentage of Fault Detection (APFD) based prioritization, and Optimal Test
Case Prioritization (OTCP).

Keywords: Regression testing, prioritization, fault detection, redundancy,
random selection.

1 Introduction

Software testing is one of the very expensive stages of software development life
cycle [22]. It is an important part of the software development irrespective of the
programming paradigm used. It is a broad term containing a wide spectrum of
different activities. It starts from the testing of small unit of software to the post
implementation and maintenance of software. The main activities involved in
software testing are preparing test cases and their respective test oracles [12]. Since
both these tasks are very tedious, therefore even after preparing test cases and test
oracles with utmost care, some bugs remain uncovered. Software may malfunction
due to uncovered bugs. The consequences of such errors may be nominal or
catastrophic depending upon the type of software application [13, 14, 15, 22]. In order
to avoid such situations, the system is tested with sufficient number of test cases and
the gap between expected value and actual value is observed. Any difference between
these values declares the system as erroneous.

 Pair-Wise Time-Aware Test Case Prioritization for Regression Testing 177

Regression testing has always remained a challenge for maintenance team. As
maintenance is not a regular or periodic activity for most of the software[13], it is
very difficult to make prediction about software maintenance time. For some software
systems like business applications, frequency of maintenance may be very high
whereas in other types like scientific application, it may be low. When software is
brought for maintenance , it is very difficult to reconstitute the same team which had
developed and tested it. The formation of new maintenance team makes this process
complex.

One of the most important constraints in regression testing is time budget [6]. With
the maintenance of software, the size of test cases usually grows making it difficult to
execute all the existing test cases and new test cases with in the specified time limit.
Prioritization of test cases is even significant if the time budget and total time for the
execution of a test suite are equal. After modification, when new changes are
incorporated in existing software, software need to be tested well by using a test suite
that covers change impact set (all modified components of software and the other
components affected by this change). Generally, due to limited time constraints, it is
impossible to execute all test cases of a test suite [11, 20, 22]. Under such
circumstances, a test case prioritization technique is required which can generate an
optimum subset of test cases that covers all or almost all changes. It is not an easy
task to construct such subset of given test suite, especially if the number of changes
made is very large. Researchers have developed different types of test case
prioritization techniques. In this paper it is evident that those techniques also prove to
be effective under given time constraints. Pair-wise Test Case Prioritization (PTCP)
technique has been presented in this paper, which prioritizes test cases such that test
cases selected from test suite (i) will always run within given time limit, (ii) will have
the highest potential for fault detection, and (iii) will have the minimum wastage
of time.

2 Review of Literature

Rothermel [16,17] et al. described different test case prioritization techniques and
compared their relative results through empirical studies. The average percentage of
fault detection (APFD) and total fault-exposing potential (TFEP) measures proposed
by them have become benchmarks for making comparisons with other techniques.
Dalal [3, 4] et al. proposed that automatic test cases that are generated by using
combinatorial approach of pair wise interaction between the input fields are highly
effective in detecting the failures as compared to traditional approach of software
testing. By using this approach, number of test cases required for testing software can
be reduced considerably.

Zang [23] et al. used integer linear programming (ILP) method for prioritizing test
cases. They represented the test case prioritization problem as an integer linear
programming of operations research constructing objective function with the help of
number of faults detected by test cases and constraints by taking time of execution of
test cases into consideration. The optimum solution of ILP gives the set of feasible
test cases for the software and they are prioritized by implementing any of the

178 P. Parashar, A. Kalia, and R. Bhatia

available test case prioritization techniques. Test cases can be prioritized on the basis
of total coverage techniques such as total statement coverage, additional statement
coverage, total fault expose potential (TFEP), total function coverage, and additional
function coverage. The success of a test case does not only depend on whether it
covers the statements that contain faults but also on its ability to surface out the
possible faults [17, 19, 22]. In latest studies, it has been observed that various
prioritization techniques like prioritization based on random ordering, optimum rate
of fault detection, number of branches covered by a test case, and number of methods
covered by a test case, are playing significant role in reducing the cost of software
testing [5]. The main advantage of all these techniques is that they are general
prioritization techniques and can be applied to any type of software application.

Arcuri A.,and Yao Xin [1] have proposed a memetic algorithm that tests container
classes of object-oriented software. The main objective of this algorithm is to reduce
the search space for object-oriented software. The objective has been achieved by
dynamically eliminating those functions from search space that have already been
covered. They compared their algorithm to a Hill climbing and a Genetic Algorithm
through empirical study and showed that memetic algorithm outperforms the other
two types of algorithms.

Corel [2] et al. proposed automatic test data generation for regression testing. The
chaining method for test data generation has been implemented in the proposed
approach. This test data generation has mainly focused on the common functionality
of old and the new system. In this method a pair of equivalent output variables has
been identified from old and new system. A software system is erroneous if for a
given input its equivalent output variables produce different outputs. The empirical
studies conducted by them on systems of different domain have shown that this
method of regression testing is most successful in version-specific software. A similar
study conducted by Xie and Notkin [21] considered value spectra to see the difference
between old and new version of software. They also performed root cause analysis of
the deviation by using some heuristics, the main variants of which have been
deviation follower and deviation container. The study conducted has shown
encouraging results to locate the deviation in the behavior of system at regression
testing. Li [9] et al. considered greedy algorithm, additional greedy algorithm, 2-
optimal algorithm, hill climbing algorithm, and genetic algorithm for prioritizing test
cases. The results of empirical study conducted by them showed that though genetic
algorithms do not produce best results all the times but they perform better as
compared to greedy algorithms and optimal algorithms most of the times. Jiang [7] et
al. proposed a genetic time aware test case prioritizing algorithm in which all
permutations of the test cases of a test suit that fit in the given time constraints have
been considered. Those test cases have been selected for final execution which
exposed maximum faults within minimum time. The algorithm has also kept an eye
on the redundancy of the test cases.

Software operational profile plays vital role in prioritizing test cases. While
prioritizing the test cases, the operation which is most important is given the highest
priority in software testing irrespective of its probability of occurrence [5, 8]. In
continuous integration, the developers integrate the software artifacts with the

 Pair-Wise Time-Aware Test Case Prioritization for Regression Testing 179

continuous integration agent frequently. Usually, the continuous integrated agent gets
a number of modules for integration at a time due to different teams of developers.
The main objective of continuous integration is that a developer gets bug report at
early stage of software development and can be fixed at earliest. By conducting
various empirical studies on different types of software, it has been observed that
coverage-based strategies for prioritizing test cases of a test suite outperforms the
other strategies in continuous integration testing [7].

Mei [10] et al. proposed a technique for prioritization of test cases for regression
testing of business-oriented application. This study has taken into account the
erroneous attempts performed by process engineers unknowingly while maintaining
some of the artifacts of a system [18]. These faults are unexpected for a test manager
and hence are not covered by traditional test suite due to its limited vision. In such
cases, coverage based testing is needed. In this study, series of such prioritizing
techniques have been implemented. The results of experimental study have shown
that the importance of an artifact plays significant role in test case prioritization.

3 Research Methodology

One of the main objectives of regression testing is to test the software within given
time budget. The PTCP technique proposed in this paper, is based on two
assumption,(i) the reordering of test cases in a test suite is an acceptable ordering i.e.
the test cases are independent from one another and hence can be executed in any
order, and (ii) reordering of test cases does not make any change in their behavior i.e.
the test case will take same time for the execution and will reveal the same faults
irrespective of its position in the test suite.

Let time budget assigned to test a software for regression testing is TB, and there
are n test cases in a test suite T with times of execution t1,t2,…,tn respectively. Even
in ideal time conditions, the prioritization of test cases is required,i.e, if the following
inequality holds true, still there is need of prioritization, either for saving time or for
additional testing.


=

<=
n

i

i TBt
1

In PTCP, while selecting a test case, number of new faults detected (fd) by it, its time
of execution(t), and number of repetitive faults detected(rfd) by it are taken into
consideration. The effectiveness (et) of a test case has been calculated as:

et=
rfdt

fd

*
 if rfd ≠ 0 and

et=
t

fd
 if rfd==0

A test case that has maximum value of et is considered as most effective. A tie is
broken arbitrarily and one of the test cases is included in the prioritized list if two or
more test cases have same maximum et value. The algorithm used for the purpose is
shown in Table A.

180 P. Parashar, A. Kalia, and R. Bhatia

3.1 PTCP Algorithm

Input: A test suite (T), permissible time budget (TB), set of faults not yet detected
(TF) and set of faults detected (fti) after execution of test case Ti.
Output: a) P: Prioritized list of test cases. b) FD: set of faults detected

In Table A, different mathematical set operations i.e. A U B, A ∩ B, |A|, and A-B
have been considered to make proposed algorithm simple and understandable. Test suite
T stores test case number. For test case T1, it stores 1, for T2, it stores 2, and so on.

After implementing the algorithm given in Table A, it has been observed that number
of random selections of test cases in PTCP is always lesser than or equal to APFD based
and OTCP techniques. et, computed in this algorithm, stores the effective potential of a
test case to detect the new faults.

Table A. PTCP Algorithm

1. max=0;
2. for i=1 to n
3. {if ((|fti |/ti ≥ max) and (ti ≤ TB)
4. {i) max=| fti |/ ti; ii) p=i;}
5. }
6. i) t=tp; ii) FD=FD U ftp;
7. iii)TF=TF-ftp; iv)P=P U Tp;
8. v) Tp=0;
9.while ((TF ≠ Φ) and ((t ≤ TB))
10.{ max=0;
11. for i=1 to n
12. {if ((Ti ≠ 0) and (t+ ti ≤ TB))
13. {fd=|TF∩ fti | ; //pairing(for new faults)
14. if (fd>0)
15. {rfd=|FD∩ fti| //pairing(redundancy)
16. if (rfd≠0)
17. et=fd/(ti*rfd);
18. else
19. et=fd/ti;
20. }
21. if (et>max)
22. {
23. i) p=i; ii) max=et;
24. }
25. }
26. }
27. t=t+tp; ii) FD=FD U ftp;
28. iii) TF=TF-ftp; iv) P=P U Tp;
29. vi) Tp=0;
30.}

 Pair-Wise Time-Aware Test Case Prioritization for Regression Testing 181

4 Objectives

The broad objective of the comparative study conducted in this section is to identify
those factors which are associated with time-aware test case prioritization. The
specific objectives of the comparative study are :

1. To analyze which technique makes optimum utilization of permissible
time budget for regression testing.

2. To Analyze which technique minimizes the overlapping of faults
detected.

5 Major Findings

The results of the comparative study are based on two examples of test suites tabulated in
Table 1 and Table 4 respectively. It has been supported from the results of study that
PTCP performs equally well as other two techniques (APFD,OTCP) with least wastage
of time. In proposed study,the time taken to detect repetitive fault(s) has been considered
a wastage, which should be minimized in regression testing if not avoided. This time can
be utilized to test some other modules (which are not included in change impact set)
which will boost the confidence in software testing. It has also been found that PTCP
technique has strong tendency to minimize repetitive fault detection. The evaluation
metrics considered in the study have played significant role in comparative study.

5.1 Analysis

A comparative study of proposed technique has been conducted with two parallel
techniques APFD and OTCP proposed by different researchers. The comparative
study has been conducted by taking two examples.In Example 1, a test suite(Table 1)
with six test cases(T1,T2,…,T6) and ten known faults (f1,f2,…,f10), has been taken.
Column T of Table 1 contains the respective times of execution(in second) of test
cases. Let time limit allowed for regression testing be 20 seconds. The evaluation
metrics proposed in this study are:

 (i) Total Faults Exposed(TFE): It represents the total number of faults exposed by
prioritized test suite. It also includes the repetitive faults detected by the test suite, if any.
The value of TFE may be greater than the total number of distinct faults present in the
software.
 (ii) Distinct Faults Detected(DFD): It represents the distinct faults detected by prioritized
test suite. If T1,T2 are two test cases that constitute the prioritized test suite and detect
faults f1, f2, f3, f5 and f2,f5, f6 respectively, the DFD value for the test suite will be 5. DFD
ignores the repetitive faults detected by prioritized test suite.
 (iii) Effective Time for execution of test cases(ET): It represents the total time taken to
execute all test cases of prioritized test suite.
(iv) Percentage of Test Suite Failure (TSF): It represents the percentage of faults
not detected by the prioritized test suite. for example. if the total number of faults
present is 10 and the prioritized test suite detects 9 faults , the value of TSE will
be 10.

182 P. Parashar, A. Kalia, and R. Bhatia

 (v) Percentage of Time Wastage (TW): It represents the percentage of total time
wasted in detecting repetitive faults. If repetitive faults take m units of time and total
time allowed is n units, then TW will be calculated as (m/n*100).
 (vi) Percentage of Time Saving (TS): The detection of all faults before given time
limit has been considered as time saving. It is calculated as (m/n*100), where m
represents the units of time saved and n represents time budget.

Table 1. Test suite and list of faults exposed (Example 1)

‘X’ represents fault detected

 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 T

T1 X X X X X 6

T2 X X X X 6

T3 X X X X 5

T4 X 3

T5 X X X X 6

T6 X X X X X 6

First row of Table 1 represents that test case T1 exposes 5 faults(f1,f2,f3, f7 and f8)
in 6 seconds. The remaining rows of Table 1 can be interpreted in similar way.

After implementing the PTCP algorithm (Example 1), the results obtained are
tabulated in Table 2.

Table 2. Prioritized set of test cases(Example 1)

Time Limit: 20 sec.

APFD T1,T6,T3,T4

OTCP T1,T3,T2,T4

PTCP T1,T3,T4,T5

In Table 2, for APFD, the test cases selected are T1,T3,T4,T6 and their order of execution
is T1, T6, T3, T4. The results for remaining techniques can be interpreted in similar way.

In Table 3, the results of evaluation metrics for different techniques are tabulated.

Table 3. Metrics values analysis (Example 1)

 TFE DFD TSF (%) ET TW(%) TS(%)

APFD 15 9 10 20 40 0

OTCP 14 10 0 20 28.6 0

PTCP 14 10 0 20 28.6 0

 Pair-Wise Time-Aware Test Case Prioritization for Regression Testing 183

In Table 3, for APFD, total number of faults exposed is 15 (5+5+4+1),distinct
number of faults detected is 9 (f1,f2,f3,f4,f5,f6,f7,f8,f10), effective time is 20 seconds
(6+6+5+3), test suite failure is 10% (f9 is undetected), time wastage is 40% (6 faults are
detected more than once in 20 seconds), and there is no time saving. The results for other
techniques tabulated in Table 3 can be interpreted in similar manner.

In Example 2, a less organized test suite has been taken into consideration. The test
suite contains test cases T1, and T3, that reveal the same faults and total faults exposed by
all its test cases are approximately three times the number of distinct faults present.
Therefore, there is a strong possibility of overlapping in fault detection. The time allowed
in this case has been considered as 12 seconds. The example is tabulated in Table 4.

Table 4. Test suite and list of faults exposed (Example 2)

‘X’ represents fault detected

 f1 f2 f3 f4 f5 f6 T

T1 X X X 5

T2 X X X 7

T3 X X X 6

T4 X X 3

T5 X X 4

T6 X X X X X 5

The prioritized test suites generated by applying different techniques have been
tabulated in Table 5 and can be interpreted in similar way as for Table 2.

Table 5. Prioritized set of test cases (Example 2)

Time Limit: 12 sec.

APFD T6,T4,T5

OTCP T6,T2

PTCP T6,T5

The evolution metrics results for Example 2 have been tabulated in Table 6.
Analysis of both examples revealed that PTCP technique performs equally well as

other two techniques, APFD and OTCP with least number of repeated faults.

Table 6. Metrics values analysis for different techniques (Example 2).

 TFE DFD TSF (%) ET TW(%) TS(%)

APFD 9 6 0 12 33 0

OTCP 8 6 0 12 25 0

PTCP 6 6 0 9 0 25

184 P. Parashar, A. Kalia, and R. Bhatia

5.2 Results and Discussion

The results of Example 1 and Example 2 are shown graphically in Figure 1 and Figure
2 respectively.

Fig. 1. Relative effectiveness of various techniques (Example 1)

Fig. 2. Relative effectiveness of various techniques (Example 2)

From the results of two comparative studies, it is evident that by taking time and
number of effective faults detected by a test case together into consideration, time
budget can be managed efficiently. After comparing the results of Figure 2 and Figure
3, it has been observed that PTCP technique is very effective if the test suite is not
properly organized. Though results of OTCP are very close to that of PTCP but still
PTCP technique is better than OTCP as the number of random selections of test cases
required in former is always less than or equal to the later. In case of OTCP, an
optimal selection of set of test cases requires the knowledge of all permutations of test
cases. It becomes complex if the size of test suite is very large. In such situation, the

 Pair-Wise Time-Aware Test Case Prioritization for Regression Testing 185

proposed technique will certainly help the maintenance team to perform regression
testing efficiently. Since time effectiveness and reduction in redundancy of faults
detection are given highest priority while forming prioritized set of test cases, the
proposed technique outperforms under tight time constraints.

5.3 Threats to Validity

Internal Validity. One of the main threats to internal validity is that this study is
based upon two main assumptions (i) the test cases of a test suite are independent
from each other and (ii) their positions in the test suite do not make any difference in
their behaviors. The assumption in all the cases may not be true. The correlation to
find the effectiveness of a test case requires further verifications and validations.

External Validity. Threats to external validity are that the study is based on the
results of two examples that contain test cases with known faults. In real practice it is
difficult to predict test cases and their respective associated faults. When the
proposed technique is implemented on subject examples, the results are satisfactory,
but in order to generalize it, more experimental studies are needed.

Construct Validity. The evaluation metrics considered in this study may be threats to
its construct validity. The mentioned evaluation metrics have appeared in very few
researches. Though, through the comparative study, it has been concluded that these
metrics play vital role in prioritization, still their relevance to the objectives requires
more exploration.

6 Conclusion and Future Work

The proposed technique for the prioritization of test cases has shown encouraging
results in maximizing fault detection and minimizing wastage of time as compared to
other techniques (APFD and OTCP). The proposed algorithm reduces the possibility
of random selection of test cases for execution. PTCP technique can be extended
further by conducting empirical study on different software. Although, the metrics
proposed in this paper are very effective, still, their generalization needs exhaustive
studies of different software domains. The present study can be extended further by
considering the behavior of faults instead of test cases.

References

1. Arcuri, A., Xin, Y.: A memetic algorithm for test data generation of object oriented
software. In: IEEE Congress on Evolutionary Computation (CEC) (2007)

2. Corel, B., Al-Yami, A.M.: Automated Regression test Generation. In: ISSTA (1998)
3. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J.M., Lott, C.M., Horowitz, B.M.: Model-

Based Software Testing of highly programmable system. In: ISSRE 1998 (1998)
4. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J.M., Lott, C.M., Horowitz, B.M.: Model-

Based Testing in Practice. In: ICSE 1999. ACM Press (1999)

186 P. Parashar, A. Kalia, and R. Bhatia

5. Sebastian, E., Malishevsky, A.G., Gregg, R.: Test case prioritization: A family of
empirical studies. IEEE Transactions on Software Engineering 28(2) (2002)

6. Graves, T.L., Harrold, M.J., Kim, J.M., Porter, A., Rothermel, G.: An empirical study of
regression test selection techniques. ACM Trans. On Software Engineering (2001)

7. Jiang, B., Zhang, Z., Tse, T.H., Chen, T.Y.: How well do test case prioritization techniques
support statistical fault localization. In: ICSAC 2009 (2009)

8. Kumar, K.S., Babu, M.R.: Software Operational Profile Based test Case Allocation Using
Fuzzy Logic. International Journal of Automation and Computing 04(4), 388–395 (2007)

9. Li, Z., Mark, H., Hierons, R.M.: Search algorithms for regression test case prioritization.
IEEE Transaction on Software Engineering 33(4) (2007)

10. Mei, L., Zhang, Z., Chan, W.K., Tse, T.H.: Test case prioritization for regression testing of
service –oriented business applications. In: WWW 2009 (2009)

11. Memon, A., Banerjee, I., Hashmi, N., Nagarajan, A.: DART: A framework for regression
testing “nightly/daily builds” of GUI applications. In: ICSM (2003)

12. Bertrand, M., Ilinca, C., Andreas, L., Lisa, L.: Automatic testing of object-oriented
Software. In: SOFSEM (2007)

13. Parashar, P., Bhatia, R., Kalia, A.: Change Impact Analysis: A Tool for Effective
Regression Testing. In: Dua, S., Sahni, S., Goyal, D.P. (eds.) ICISTM 2011. CCIS,
vol. 141, pp. 160–169. Springer, Heidelberg (2011)

14. Parashar, P., Kalia, A., Bhatia, R.: Fault-based time-aware test case prioritization for
regression testing. In: The Proc. Indian Science Congress 2011, pp. 94–103 (2010)

15. Philippe, G., Segla, K., Filippo, R., Giuliano, A.: Evolution and Search Based Metrics to
Improve Defects Prediction, pp. 23–32. IEEE Society (2009)

16. Gregg, R., Untch, R.H., Chu, C., Jean, H.M.: Prioritizing test cases for regression testing.
IEEE Transactions on Software Engineering (2001)

17. Gregg, R., Untch, R.H., Chu, C., Jean, H.M.: Test case prioritization: An Empirical study.
In: ICSE 1999 (1999)

18. Mark, S., Mike, L., Laurie, W.: Prioritization of regression tests using singular value
decomposition with empirical change records. In: ISSRE (2007)

19. Voas, J.: PIE: A dynamic failure-based technique. IEEE Transaction on Software
Engineering, 717–727 (1992)

20. Walcott, K.R., Kapfhammer, G.M., Soffa, M.L., Roos, R.S.: Time-aware test suite
prioritization. In: ISSTA 2006 (2006)

21. Xie, T., David, N.: Checking Inside the Black Box: regression testing by Comparing Value
Spectra. IEEE Transactions on Software Engineering 31(10) (2005)

22. Yoo, S., Harman, M.: Regression Testing Minimization, Selection, and Prioritization: A
Survey. Softw. Test. Verif. Reliab. (2007)

23. Zang, L., Hou, S.S., Guo, C., Xie, T., Mei, H.: Time-Aware Test –Case Prioritization using
Integer Linear Programming. In: ISSTA 2009 (2009)

	Pair-Wise Time-Aware Test Case Prioritization for Regression Testing
	SOURCE Citation

	Microsoft Word - 02850176

