
Sheridan College Sheridan College 

SOURCE: Sheridan Institutional Repository SOURCE: Sheridan Institutional Repository 

Publications and Scholarship Faculty of Applied Science & Technology (FAST) 

2011 

Change Impact Analysis: A Tool for Effective Regression Testing Change Impact Analysis: A Tool for Effective Regression Testing 

Prem Parashar 
Sheridan College, prem.parashar@sheridancollege.ca 

Rajesh Bhatia 
Thapar University 

Arvind Kalia 
Himachal Pradesh University 

Follow this and additional works at: https://source.sheridancollege.ca/fast_publications 

 Part of the Software Engineering Commons 

Let us know how access to this document benefits you 

SOURCE Citation SOURCE Citation 
Parashar, Prem; Bhatia, Rajesh; and Kalia, Arvind, "Change Impact Analysis: A Tool for Effective 
Regression Testing" (2011). Publications and Scholarship. 70. 
https://source.sheridancollege.ca/fast_publications/70 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 
This Conference Paper is brought to you for free and open access by the Faculty of Applied Science & Technology 
(FAST) at SOURCE: Sheridan Institutional Repository. It has been accepted for inclusion in Publications and 
Scholarship by an authorized administrator of SOURCE: Sheridan Institutional Repository. For more information, 
please contact source@sheridancollege.ca. 

https://source.sheridancollege.ca/
https://source.sheridancollege.ca/fast_publications
https://source.sheridancollege.ca/fast
https://source.sheridancollege.ca/fast_publications?utm_source=source.sheridancollege.ca%2Ffast_publications%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=source.sheridancollege.ca%2Ffast_publications%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.google.com/forms/d/e/1FAIpQLSf7q5WZp0i0L8SWABAz3ZpRCipBkE5zHDR2o3dFhtHvN8DaXA/viewform
https://source.sheridancollege.ca/fast_publications/70?utm_source=source.sheridancollege.ca%2Ffast_publications%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:source@sheridancollege.ca


S. Dua, S. Sahni, and D.P. Goyal (Eds.): ICISTM 2011, CCIS 141, pp. 160–169, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Change Impact Analysis: A Tool for Effective  
Regression Testing  

Prem Parashar1, Rajesh Bhatia2, and Arvind Kalia3 

1 Computer Science Department, Chitkara University, Barotiwala, Solan, India 
2 Computer Science Department, Thapar University, Patiala, India 

3 Computer Science Department, Himachal Pradesh University, Shimla, India 
{prem.parashar,rbhatiapatiala,arvkalia}@gmail.com 

Abstract. Change impact analysis is an imperative activity for the maintenance 
of software. It determines the set of modules that are changed and modules that 
are affected by the change(s). It helps in regression testing because only those 
modules that are either changed or affected by the suggested change(s) are re-
tested. Change impact analysis is a complex activity as it is very difficult to 
predict the impact of a change in software. Different researchers have proposed 
different change impact analysis approaches that help in prioritization of test 
cases for regression testing. In this paper, an approach based on Total 
Importance of Module (TIM) has been proposed that determines the importance 
of a module on the basis of (i) user requirements, and (ii) system requirements. 
The results of the proposed algorithm showed that the importance of a module 
is an essential attribute in forming a prioritized test suite for regression testing.   

Keywords: granularity, prioritization, maintenance, change impact, impact set. 

1   Introduction 

Software maintenance is a regular activity as the requirements of user changes 
frequently. The maintenance of software may be preventive maintenance, adaptive 
maintenance or extensive maintenance. Regression testing is one of the most 
important and complex software testing methods [2] because even a subtle change in 
software may require rerun of all its old test cases and test cases designed for the 
change [16]. The major challenge for regression testing is the permissible time budget 
[8, 10]. After maintenance, modified software is required to be re-installed at the 
earliest. Due to a limited time budget allowed for regression testing, it may not be 
possible to rerun the entire test suite designed for the original software and test suite 
designed for its modified components. For gaining confidence in maintenance, all 
those test cases that cover the changed components and the components that get 
affected by the changes should be rerun[21]. The impact set of modules generated 
after the suggested change(s) may be formulated with the help of change impact 
analysis.  Change impact analysis helps in finding the changed modules and modules 
affected by the change. A fine grained change impact analysis technique is always 
preferred to generate the precise impact set [13]. The impact set generated thus 
facilitates in effective regression testing because only the modules that constitute the 
impact set are tested.  



 Change Impact Analysis: A Tool for Effective Regression Testing 161 

Several change impact analysis approaches are reported in the review of literature 
[20, 21] . Most of the approaches are based on two assumptions, i.e. (i) all modules 
have equal importance in software [12], and (ii) each fault has equal severity [3].  In 
real practice, the importance of a module may play a vital role in regression testing 
i.e. module with the highest priority should be tested first. This is the main motivation 
factor behind performing this study.  

In this study, it has been assumed that (i) user requirements, (ii) the call graph of 
system, and (iii) the historical records about the execution of the module are three 
main factors that define the overall importance of module. To determine the 
importance of a module, three metrics i.e. User-defined Importance of Module (UIM), 
Dynamic Importance of Module (DIM), and History Value of Module (HVM) have 
been proposed. UIM is supposed to be defined by user in requirements, DIM of a 
module is supposed to be dependent on the structure of the call graph of system, and 
HVM is defined by the historical records of the execution of the module with respect 
to the execution of the system.  

2   Review of Literature 

Rajlich [13] et al. proposed an iterative impact analysis method that uses the different 
level of granularity in order to achieve high level of precision. The granularity of 
components was performed at three different levels i.e. class, class member and code 
fragment level.  From the empirical study conducted, it was evident that proposed 
algorithm is effective when the level of granularity is grained to code fragment level. 
For dynamic change impact analysis of software, atomic changes in source code 
responsible for the behavioral changes of test cases were considered .The main 
concern of this technique is to identify a subset of the changes that actually affects the 
behavior of a test case [15]. The results of the case studies based upon above 
technique evident that most of changes were captured by the execution of half of test 
cases.   

Tie [19] et al. proposed a component interaction trace based approach to trace out 
the dynamic change impact analysis. The static structure of the components and their 
interfaces through which they are integrated is represented with the help of 
collaboration diagram and the dynamic model is represented with the help of the 
sequence diagram describing the objects interactions. If the two interfaces are serving 
approximately same purposes then it was proposed to replace one interface by the 
other and the unique services provided by the former were introduced in the later.  

Sherriff [17,18] et al. proposed a change impact analysis approach based upon 
singular value decomposition (SVD) to find the structure of the file association 
clusters and the amount of variation done by this cluster in the original system after a 
change.  They explored the concept of SVD in finding the impact of change in a 
system that contains a number of executable and non-executable files. This technique 
has been found quite satisfactory if the level of granularity is file and provides 
encouraging results.  This technique is suitable for finding file association clusters of 
source files as well as non-source files. For object-oriented software, a model-based 
approach [10] that takes two different models i.e. activity diagram and sequence 
 



162 P. Parashar, R. Bhatia, and A. Kalia 

diagram to establish mapping is used to find the impact of change. These models of 
object-oriented software are mapped on the basis of some well-founded rules of 
relationship. The main advantage of this approach is that it does not require source 
code of software.  

Rao [14] et al. proposed a quantitative method to detect the impact set if a change 
is made in an artifact and also to detect an artifact that is affected by the change. The 
method uses design change propagation probability (DCPP) matrix. DCPP is based 
upon the degree of coupling between two artifacts. The DCPP method is a 
quantitative method. It helps in finding the propagation of change.  URA used in this 
case along with the corresponding DCPP clearly depicts the static behavior of the 
system. The method can also be used to automate the change impact propagation.   

Park [12] et al. proposed a method to identify multi dimensional dependencies  
on the basis of process slicing. Process slicing can handle multi-dimensional 
dependencies effectively. The proposed algorithm handles the cases where any 
change in one activity produces change in two or more artifacts. The main objective 
of the proposed algorithm is to find out and to test that part of the software which is 
affect by the specified change. The time budget for regression testing is usually less 
therefore it is not practical to rerun all the tests of the old software along with the 
additional tests for the changed part. German [5] et al. proposed a method of 
determining the impact of historical changes on a particular code segment that in 
terms makes some failures.  They considered C language program as a code segment 
for their study and took all the functions into consideration that affect the performance 
of the function. They prepare a change impact graph (CIG) that clearly determines all 
the functions that are falling into the way to make this function affected.  

Orso [10] et al. proposed an approach that uses the field data instead of synthesized 
data to find the change impact analysis and regression testing. The software is tested 
against the field data collected. In this study, different ways of measuring the impact 
of change on the user population has been studied. Since live data from the actual 
users are used to analyze the impact of change, therefore the approach immediately 
reflects the results whether the changed software is useful to specified class of users 
or not. The approach is adequate if the user population is limited. Orso [11] et al. 
performed some empirical studies to make the comparisons of dynamic impact 
analysis algorithms. In their studies two dependency based algorithms i.e. coverage 
dynamic impact algorithms and path dynamic impact algorithms are explored to make 
a comparison about the precision of these algorithms. The empirical studies are 
performed on small java programs. The level of granularity considered in the studies 
is of method level. This is one of the empirical studies that deals directly with the  
cost –benefit analysis. Nadi [9] et al. developed a framework that helps in determining 
the root cause analysis and change impact analysis for configuration management data 
bases (CMDB). CMDB is used to store the different types of information like 
hardware, software and the services provided by an organization. For each 
component, it records all relevant information. The framework proposed serves two 
main purposes, (i) it helps to find the root cause of a failure of a component, and (ii) it 
determines the set of components that are affected by a change in a particular 
component. 



 Change Impact Analysis: A Tool for Effective Regression Testing 163 

Breech [1] et al. proposed an approach to whole program path-based dynamic 
change impact analysis. This approach is completely online. The method used in this 
case assume that any function that is either called directly or indirectly by the changed 
function or executed after a call to the changed function will constitute impact set. 
The approach used in this case is safe as it deals with the set of those functions which 
are potentially affected by a changed function but sometimes it generates imprecise 
impact set. 

Yu and Rajlich [22] studied hidden dependencies among various software 
components that may cause malfunctioning of the software. They proposed an 
algorithm that warns about the hidden dependencies in the components that may be 
caused due to the improper structure of the components. Ma [7] et al. developed an 
algorithm that helps to find the relative importance of modules present in the system. 
One of the main objectives of change impact analysis is to trace out those modules 
that are observing the change or are affected by the proposed change. In real practice, 
when subtle change is made in one module that affect different parts of the software. 
The parts may be technical or non technical. After change impact analysis the subset 
of the modules that have been surfaced out as impact set need to be tested. Due to 
limited time and other resource constraints it is not easy to test all the modules of the 
impact set. There is always a tendency from the developer side to test those modules 
first which detect maximum faults. Ma [7] et al. proposed an effective algorithm that 
determines the importance of a module to the system. The algorithm successively 
deals with the hierarchical structure of the module. It deals with the acyclic graph of 
module effectively.  

English [3] et al. studied the fault detection and prediction in open-source software. 
Their study is mainly content based. They leveraged some popular metrics like 
Number of methods in a class (NMC), depth of inheritance tree (DIT) number of 
children (NOC), coupling between object classes (CBO) and response for a class 
(RFC).  The results of the study are encouraging as they strengthen Pareto’s law i.e. 
about 80%of the faults/issues are due to 20% of the code. They have tried to trace out 
dependent and non-dependent variable to some extent. 

Engstrom [4] et al. conducted a longitudinal study on the various techniques used 
for regression test selection. Since this review contains research papers from the start 
of the era of software testing, it gives the future researchers as well as developers a 
systematic review of how the regression testing test selection methods varied from 
software to software and from time to time. The techniques summarized certainly 
helps the industry and academia to pursue further research in the area.  

3   Objectives 

The broad objective of this study is to prioritize a test suite on the basis of the 
importance of changed /affected modules. The specific objectives of the study are: 

1. To analyze the significance of the importance of a module when we prioritize 
a test suite for regression testing. 

2. To analyze whether proposed algorithm is effective for prioritization of test 
cases for regression testing. 



164 P. Parashar, R. Bhatia, and A. Kalia 

4   Research Methodology 

Change impact analysis is before maintenance activity of software. It gives a clear 
clue to maintenance manager about (i) whether the required changes should be 
incorporated in the existing software or (ii) should it be re-engineered.  Each module 
that constitutes software has its own importance. The importance of a module is 
defined in many ways. In the proposed approach, the importance of a module has 
been assumed to be defined by the user, by the developer or by the history of its use. 
For example, ATM system of a bank uses cash withdrawal module most of the time 
as compared to mini statement module. Therefore according to proposed approach 
cash withdrawal module is more important as compared to mini statement module.  
Importance of a module plays a significant role while it is maintained. The most 
important modules of system should be maintained with utmost care so that at least 
they should not malfunction at any point of time during execution. At the time of 
regression testing, those modules that have high priority values to the software are 
tested first. Total Importance of Module mi (TIM (mi)), is given by: 
 

                                TIM (mi) = UIM (mi)*DIM (mi)*HVM (mi)                            (1) 
 
In Equation (1), UIM (mi), DIM (mi), and HVM (mi) represent the static importance, 
dynamic importance, and historical value of the module mi respectively. UIM of a 
module is a numeric value assigned to it by user. The value ranges from 1 to 5. If a 
module has a UIM value of 5, it means it is the most important, and one means it is 
the least important. DIM of a module is calculated from the Call Graph (CG) of 
software. It is calculated as: 
 

                                     DIM (mi) = TD (mi)/TD (CG)                                           (2) 
 
In Equation (2), TD (mi) and TD (CG) represent total degree of module mi and total 
degree of call graph respectively. HVM (mi) is calculated from the historical records 
of execution of software. It is calculated as: 
 

                              HVM (mi) =THC (mi)/THC (CG)*HTI         (3) 
 
In Equation (3), THC (mi), THC (CG), and HTI represent the total number of calls 
made to module mi in a history time interval, total calls made to all modules in a 
history time interval, and a history time interval respectively. For example, if a 
module is called 10 times in previous five executions and the total modules called 
during these five executions are 50 then HVM (mi) will be 1.0. HTI represents the 
total number of previous executions taken into account while finding HVM (mi). It 
is practically difficult to maintain the records of all the previous executions of large 
software which is running from years. HTI limits time interval to some well defined 
number of executions, so that the better idea of its recent importance could be 
drawn.  

After modification of software, two module sets are generated by change impact 
analysis i.e. a changed set and an affected set. If a module is changed then its entire 
neighboring module in the call graph are affected by the change. The neighboring 
 



 Change Impact Analysis: A Tool for Effective Regression Testing 165 

modules constitute the estimated impact set. Depending upon the importance, 
changed modules and impacted modules are tested. A simple algorithm for this has 
been described in Fig. 1. In this algorithm, a term ‘cover a module’ has been used 
which signifies that the module has been tested with all test cases required for it, and 
the bugs have been fixed. Simple mathematical set operations like A U B, A-B have 
been used to make the proposed algorithm understandable. 

 
1. Let TCM, is impact set and TS, is a test set array where TS[i] contains the number 

of test cases required to cover a module M[i]. 
2. Time, is an array where Time[i] stores maximum time required to cover a module 

M[i]. 
3. Calculate TIM value for each module of TCM with the help of Equations (1), (2), 

and (3). 
4. Sort the modules of TCM according to TIM values (in descending order) 
5. Rearrange TS, and Time elements according to TCM. e.g. if nth. element of 

original TCM has become first element in the sorted TCM, them Time [1] 
=Time[n] and      TS [1] =TS[n]. 

6. Take t=0, i=0      //t represents the time required to execute the selected module(s). 
7. While ((TCM ≠ Φ)and(t ≤ TB)) //TB permissible time budget. 
8.  { 
9.   if( t+ Time[i]≤ TB) 
10.       { 
11.           (i)     P  =  P U TS[i]         // P: prioritized test suite 
12.           (ii)    t   =  t+ Time[i] 
13.          (iii) TCM=TCM-M[i] // module present at ith location of TCM will be 

removed. 
14.      } 
15.   Else 
16.     TCM=TCM-M[i] 
17. } 

Fig. 1. TIM Test Case Prioritization Algorithm 

5   Analysis 

For the experimental setup, a small menu driven C language program, for basic 
mathematical operations, has been considered. The program is presented in Fig. 2. 
Suppose that the line no. 29 (highlighted) of program is modified (modified statement 
is written in bold and the old statement is written in comments). This change in the 
program affects the modules main(), sub() and div(). Thus, TCM consists of {main (), 
sub (), ()}. The CG of this program is represented in Fig. 3.  

Module div() (represented with ‘*’) is the changed module and the modules sub(), 
and main() (represented with ‘**’) are affected modules. Modules add (), and mul() 
are unaffected by the change. Let us assume that there are six test cases in the test 
suite: T1, T2, T3, T4, T5, and T6. Let time taken(in seconds) to execute test cases T1, 
T2, T3,T4, T5, and T6 be 3, 2, 4,1, 5,and 2  seconds, respectively. 

 
 



166 P. Parashar, R. Bhatia, and A. Kalia 

1. #include <stdio.h> 
2. void main(void) 
3. { 
4.    int a, b, sum,subt , mult,divd ; 
5.    char choice; 
6.    int add(int,int);    int sub(int,int); int mul(int, int);  int div(int,int); 
7.    scanf(“%d%d%c”, &a,&b, &choice); 
8.    switch(choice) 
9.   { 
10.    case ‘a’:            printf(“Addition of a and b=%d\n”, add(a,b)); break; 
11.    case ‘s’ :           printf(“subtraction of a and b=%d\n”,sub(a,b)); break; 
12.    case ‘m’:          printf(“Multiplication of a and b=%d\n”,mul(a,b)); break; 
13.    case ‘d’ :          printf(“division of a by b=%d\n”, div(a,b)); break; 
14.    default:            printf(“Invalid Choice\n”); 
15.   }  
16. }    /* end main()  */              
17. int add(int x,int y) {return(x+y);} 
18. int sub(int x,int y) { return (x+y);} 
19. int mul ( int x, int y) 
20. { 
21.      int i=1,p=0; 
22.      for(i=1;i<=y;i++) 
23.      p=p+add(x,0); 
24.     return p; 
25. }                   /* end mul()   */ 
26. int div ( int x, int y) 
27. { 
28.    int p=0; 
29.    while(x>=y)     /* while(x>y) is the original statement */ 
30. { 

a. x=sub(x,y);     b.    p=p+1; 
31. } 
32. return p; 
33. }              /*  end div()  */ 

Fig. 2. C language Program for Basic Mathematical Operations 

 
 
 
 
 
 
 
 

 

Fig. 3. Call Graph of Program (Fig. 2)  

The assumed test case coverage of modules of  Fig. 3 is shown in Table 1. From 
Table 1, it can be derived from Table 1 that test suite required for the execution of 
changed module and affected modules will be  consist of T2, T3, T4, T5, and T6. In this 

**main() 

add() **sub() 

*div() mul() 



 Change Impact Analysis: A Tool for Effective Regression Testing 167 

example, TCM array will store values {div(), sub(), main()}, TS will store three test 
suites corresponding to each  module present in TCM i.e. {{ T4,T6},{ T2, T6},{ T3,T4, 
T5 }}. Time array will store corresponding values of execution time of respective test 
suites i.e. Time {3, 4, 10}.  

Table 1. Test Coverage Representation of Modules (Fig. 3) 

Module Test cases required for coverage Time taken(in seconds) 
main() T3,T4, T5 10 
add() T1,T5 8 
sub() T2, T6 4 
mul() T3,T5 9 
div() T4,T6 3 

 
TIM for these modules can be calculated by using Equations (1), (2), and (3). HTI 

value has been considered as 20, and both modules sub () and div () are called 5 times 
in 20 executions of program. TIM values of the required modules have been tabulated 
in Table 2. From TIM values, it can be concluded that module main () is the most 
important and module sub () has the least importance. Thus, TCM will have modules 
arranged in order {main (), div (), sub ()}.  Accordingly, TS will also get rearranged 
and the element will be {{T3, T4, T5}, {T4, T6}, {T2, T6}}. Time array will have 
vales {10, 3, 4}. The prioritized test set P for this example will contain test cases in 
order T3, T4, T5, T6, and T2 according to the importance of modules of estimated 
impact set.  

Table 2. TIM Values of Changed/Affected Modules 

Module UIM DIM THC(Module) HVM TIM 
main() 4 0.333333 20 20 26.66667 
sub() 2 0.166667 5 5 1.666667 
div() 3 0.166667 5 5 2.5 

 
According to the proposed algorithm represented in Fig. 1, depending upon the 

value of time budget available for regression testing, all test cases for selected 
module/modules will be executed. For example, if time budget is 10, only module 
main () will be tested. 

5.1   Major Findings  

For the evaluation of the proposed algorithm (Fig. 1) a small C language program 
(Fig. 2) , has been considered. From the results of this experiment, it has been 
observed that the importance of a module plays a significant role in prioritizing a test 
suite for regression testing. UIM, DIM and HVM metrics proposed in this paper 
facilitates in the calculation of TIM of a module. Even, if the time budget allowed is 
greater than the time required to execute the prioritized test suite, prioritization of test 
cases is important for additional coverage of modules. Further, it has been observed 
that there is the least possibility for any two modules to have the same value of TIM. 
This will help to reduce the random selection of test cases at the time of prioritization. 



168 P. Parashar, R. Bhatia, and A. Kalia 

5.2   Threats to Validity 

Main threat to validity is that two main contributors towards TIM, i.e. UIM and HVM 
are decided by user and developer respectively.  Though, the metrics, TIM, UIM, 
DIM, and HVM are effectual to find the importance of a module, still, Generalization 
of the results of proposed algorithm requires more empirical studies. The correlation 
of metrics UIM, DIM, and HVM used in the algorithm to generate TIM, needs 
extensive investigational studies for its universal acceptance. 

6   Conclusions 

In prioritization of test cases for regression testing, the role of a module is very 
significant. The modules of TCM set should be tested according to the order of their 
importance. TIM algorithm, present in the current study, prioritizes test cases on the 
basis of the importance of their respective modules. The metrics proposed in this 
study played an imperative role in finding the importance of modules. The current 
study can be extended further by applying TIM algorithm to programs of different 
sizes, types, and complexities.  

References 

1. Breech, B., Danalis, A., Shindo, S., Pollock, L.: Online impact analysis via dynamic 
compilation technology. In: ICSM 2004, September 11-14 (2004) 

2. Chechik, M., Winnie, L., Nejati, S., Cabot, J., Diskin, Z., Eaterbrook, S., Sabetzadeh, M., 
Salay, R.: Relationship-based change propagation: a case study. In: MiSE 2009, May 17-
18 (2009) 

3. English, M., Exton, C., Rigon, I.: Fault detection and prediction in an open-source 
Software project. ACM, New York (2009) 

4. Engstrom, E., Skoglund, M., Runeson, P.: Empirical evaluation of regression test selection 
techniques: a systematic review. In: ESEM 2008, October 9-10 (2008) 

5. German, D.M., Robles, G., Hassan, R.E.: Change impact graph: determining the impact of 
prior code changes. In: IEEE Working Conference on Source Code Analysis and 
Manipulation, SCAM (2008) 

6. Kagdi, H.Z., Jonathan, I.M.: Software-change prediction: estimated+ actual. In: Proc. 
IEEE Workshop on Software Evolvability, pp. 38–43 (2006) 

7. Ma, Z., Zhao, J.: Test case prioritization based on analysis of program structure. In: 
APSEC (2008) 

8. Maia, C.L.B., Refael, A.F.D.C., Fabricio, G.D.F.: Automated test case prioritization with 
reactive GRASP. In: Advances in Software Engineering. Hindawi Publishing Corporation 
(2010) 

9. Nadi, S., Holt, R., Davis, I., Mankovskii., S.: DRACA: decision support for root cause 
analysis and change impact analysis for CMDBs (2009) 

10. Orso, A., Apiwattanapong, T., Law, J., Rothermel, G., Harrold, M.J.: Leveraging field data 
for impact analysis and regression testing. In: ESEC/FSE 2003, September 1-5 (2003) 

11. Orso, A., Apiwattanapong, T., Law, J., Rothermel, G., Harrold, M.J.: An empirical 
comparison of dynamic impact analysis algorithms. In: ICSE 2004 (2004) 



 Change Impact Analysis: A Tool for Effective Regression Testing 169 

12. Park, S., Kim, H., Bae, D.H.: Change Impact analysis of a software process using process 
slicing. In: QSIC (2009) 

13. Rajlich, V., Patrenko, M.: Variable granularity for improving precision of impact analysis. 
In: ICPC (2009) 

14. Rao, A.A., Reddy, K.N.: Detecting bad smells in object oriented design using design 
Change propagation probability matrix. In: IMECS 2008, Hong Kong (March 2008) 

15. Ryder, B.G., Ren, X., Shah, F., Tip, F., Chesley, O., Chianti, J.: A tool for change Impact 
analysis of java program. In: OOPSLA 2004, October 24-28 (2004) 

16. Sanjeev, A.S.M., Wibowo, B.: Regression test selection based on version changes of 
components. In: Proceedings of APSEC 2003 (2003) 

17. Sherriff, M., Lake, M., Williams, L.: Prioritization of regression tests using singular value 
decomposition with empirical change records. In: International Symposium on Software 
Reliability Engineering (November 2007) 

18. Sherriff, M., Williams, L.: Empirical software change impact analysis using singular value 
decomposition. In: ICST (2008) 

19. Tie, F., Maletic, J.I.: Applying dynamic change impact analysis in component-based 
Architecture design. In: ACIS International Conference on Software Engineering (2006) 

20. Walcott, K.R., Kapfhammer, G.M., Soffa, M.L., Roos, R.S.: Time-aware test suite 
prioritization. In: Proceedings of ISSTA 2006, July 17-20 (2006) 

21. Yoo, S., Harman, M.: Regression testing minimization, selection, and prioritization: a 
survey. Software Test. Verif. Reliab. (2007) 

22. Yu, Z., Rajlich, V.: Hidden dependencies in program comprehension and change 
Propagation. In: IWPC (2001) 

View publication statsView publication stats

https://www.researchgate.net/publication/226568519

	Change Impact Analysis: A Tool for Effective Regression Testing
	SOURCE Citation

	Microsoft Word - 01410160.doc

