
Sheridan College Sheridan College

SOURCE: Sheridan Institutional Repository SOURCE: Sheridan Institutional Repository

Publications and Scholarship Faculty of Applied Science & Technology (FAST)

7-2-2014

Role of Quality Source Code Documentation in Software Testing Role of Quality Source Code Documentation in Software Testing

Prem Parashar
Sheridan College, prem.parashar@sheridancollege.ca

Arvind Kalia
Himachal Pradesh University

Rajesh Bhatia
PEC University of Technology

Follow this and additional works at: https://source.sheridancollege.ca/fast_publications

 Part of the Software Engineering Commons

Let us know how access to this document benefits you

SOURCE Citation SOURCE Citation
Parashar, Prem; Kalia, Arvind; and Bhatia, Rajesh, "Role of Quality Source Code Documentation in Software
Testing" (2014). Publications and Scholarship. 72.
https://source.sheridancollege.ca/fast_publications/72

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
This Article is brought to you for free and open access by the Faculty of Applied Science & Technology (FAST) at
SOURCE: Sheridan Institutional Repository. It has been accepted for inclusion in Publications and Scholarship by an
authorized administrator of SOURCE: Sheridan Institutional Repository. For more information, please contact
source@sheridancollege.ca.

https://source.sheridancollege.ca/
https://source.sheridancollege.ca/fast_publications
https://source.sheridancollege.ca/fast
https://source.sheridancollege.ca/fast_publications?utm_source=source.sheridancollege.ca%2Ffast_publications%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=source.sheridancollege.ca%2Ffast_publications%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.google.com/forms/d/e/1FAIpQLSf7q5WZp0i0L8SWABAz3ZpRCipBkE5zHDR2o3dFhtHvN8DaXA/viewform
https://source.sheridancollege.ca/fast_publications/72?utm_source=source.sheridancollege.ca%2Ffast_publications%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:source@sheridancollege.ca

Role of Quality Source Code
Documentation in Software Testing

Prem Parashar(1), Arvind Kalia(2),, and Rajesh Bhatia(3)

(1) Faculty of Applied Science and Technology .Sheridan College (Canada)
E-mail: prem.parashar@gmail.com

(2) Department of Computer Science.Himachal Pradesh University (India)
E-mail: arvkalia@gmail.com

(3) Department of Computer Science.PEC University of Technology (India)
E-mail: rbhatiapatiala@gmail.com

ABSTRACT

Software testing is performed to validate that software under test meets all
requirements. With the increase in software developing platforms, developers
may commit those errors, which, if not tested with appropriate test cases, may
lead to false confidence in software testing. In this paper, we proposed that
building quality source code documentation can help in predicting such errors.
To validate this proposal, we performed an initial study and found that if
software is well documented, a tester may predict the possible set of errors
that developers may commit, and hence, may select better test cases that
target those faults. From this study, it has been observed that proper code
documentation can help in selecting appropriate test cases from candidate
test cases and can lead to more effective software testing.

Keywords: Software testing, Documentation, Prioritization, test suite, faults.

1- INTRODUCTION

Software testing is an important software development activity. The objective
of software testing is not limited to validate that the software is doing what it is
expected to do but to ensuring that software is not doing what is not expected.
Software testing often consumes 50-60% of the total development time and
cost [1]-[5].

Software documentation plays a significant role in software design, develop-
ment, testing, and implementation. If documentation exists, this is the first
document that its users refer to understand the intended behavior of software
‎[8]. Different software documents are referred to by different classes of user.
For example, code documentation is referred to by the core development
team, test documents are used by the test team, and help and installation
manuals are generally used by end users. The software documentation is writ-
ten internally in the form of software comments or externally in the form of
software design documents, help manuals, UML diagrams, installation manu-
als and other related materials [1], [7]-[11]. Though documentation is not
usually deemed as important as software itself, but with the evolution of soft-

Role of Quality Source Code Documentation Parashar et al

95

ware development techniques, software documentation has been taken as
benchmark for understanding, development, implementation and post-
implementation [4], [12]-[14].Software are evolved more frequently these
days; hence, documentation must be updated when software changes.

Software documentation helps in understanding the behavior of software.
Building quality source code may assist the testing team to build test cases
that are more effective for the system under test. Though the use of documen-
tation can be extended to any phase, we highlighted its use in the area of
software testing. The current study emphasized the use of detailed and com-
plete source code documentation in effective test case selection from a set of
candidate test cases. By candidate test cases, we mean the test cases which
have identical code coverage and are intended to expose the same faults. For
example, to check whether an integer is even, the numbers 2, 4, 6, 10 etc. are
the candidate test cases and hence, any test case may be selected for execu-
tion. By detailed and complete documentation, we mean that every major part
of software is well documented. Let us assume that our application involves
sorting (in ascending order) a list of integers. There are a number of methods
to accomplish this task. Therefore, software documentation should contain the
details of the method (bubble, selection, quick, etc.) that has been chosen for
the current application.

This paper is organized as follows. Section 2 discusses about the background
work in this field. Section 3 contains the research methodology, section 4 de-
scribes the specific objectives, section 5 talks about experimental setup and
results, and section 6 concludes the paper with future scopes.

2- RELATED WORK

Software testing is very expensive and crucial phase of software development
due to change in the requirements, high software dependency, and changing
software development paradigms. Software documentation plays significant
role in testing. Forward and Lethbridge [7],[15],[16] conducted a detailed sur-
vey to find out the relevance of software documentation in effective software
development, maintenance and future enhancement. The survey was con-
ducted by asking software developers about the software documentation they
refer to while developing a project. There was no any clear indication that the
software documentation depends on the type of software development model,
however, the participants agreed that agile and iterative software development
involve more up-to-date software documentation as compared to water-fall
software development. The different studies also revealed that although up-to-
date software documentation is always more effective and desired, outdated
software documentation may also help in understanding software up to some
extent. As software evolves, so should the software documentation ‎[17]. In
real practice, it has been observed that during the maintenance of software,
software documentation is generally not updated due to strict time and other
cost constraints ‎[18].

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

96

 Hartmann et al. ‎[6] found that software documentation is very effective for
understanding and implementing complex systems. Their study further re-
vealed that proper software documentation is especially important in reverse
engineering, understanding legacy software, and Mining Software Reposito-
ries (MSR). By proper software documentation, they meant that documenta-
tion is not only limited to software coding but it covers all aspects of software.

Source code documentation has been found very useful in the software
maintenance. The results of a survey conducted by Sergio et al. ‎[13] revealed
that after source code, comments are the form of software documentation that
is most frequently referred to when building structured analysis and object-
oriented artifacts. Contrary to general opinion, it was observed that the UML
diagrams (except class and use case diagrams) are referred only at the time
of software development, and rarely referred after the implementation of soft-
ware. Their survey also revealed that quality software documentation is either
absent in legacy software or it is not up-to-date. The documentation generally
not updated after the maintenance of software.

It has been observed that internal software documentation, which is accom-
plished by writing code comments, is generally not updated as the software
evolves ‎[19]. Comments that are useful at one time of software development
may become irrelevant when they are not updated as the software changes.
Bad comments may mislead software developers due to obsolete and irrele-
vant information. In a study conducted by Lin T. et al. ‎[19], it was found that
generally comments are not maintained when software is modified. The obso-
lete comments may lead to new bugs at the time of maintenance. The main
barrier for not maintaining the comments was the language in which they are
written. The comment writing is performed in natural languages which are
highly imprecise‎and‎hence‎ it’s‎difficult‎ to‎automate‎documentation.‎The‎au-
tomatic generation of user documentation for GUI programs for information
systems was proposed by Tsybin, A. and Lyadova, L. ‎[20]. They proposed
automatic user documentation which is based on the metadata maintained in
documented systems. The document component is treated as a spate entity
which can be integrated with any other entities to derived meaningful results
and up-to-date enhancement in it.

 In an interview study, performed by Timea and Barbara ‎[21], it has been ob-
served that a lot of information is needed by testers at the time of test case
formation and software testing. Up-to-date information certainly helps the test-
ing team to make right decisions about testing process. The study is confined
to conclude which of the available documentation records are most frequently
used in software testing. The experienced testers of SIKOSA project were the
subjects of interview. The results of this study showed that previous defect
reports, if exist, are the most frequently used documents during system test-
ing. User manual and requirement documents are also referred as they pro-
vide the information about the expected behavior of system under test.
Though, such studies seem very beneficial for future development and testing,

Role of Quality Source Code Documentation Parashar et al

97

their universal acceptance requires more studies that provide broader view on
the subject topic.

 The software documentation is very useful in understanding, developing, test-
ing, and maintaining software. The incorrect or obsolete documentation, es-
pecially user manual documents, can put the prestige of a software develop-
ing company into risk. The software is expected to behave as per user manu-
al, and if not, software developing company may subject to the liability for
breach of promises ‎[22]. It might seems self evident that the main reasons of
not updating software documentation with the software evolution is that soft-
ware documentation has still been considered a pure non-technical attribute of
software which does not participate in its direct implementation; hence, it has
been considered by software developing houses as an extravagant. Software
companies hesitate to allot sufficient budget and man power for software doc-
umentation activities especially at the time of its maintenance and most of the
software developing firms consider it as a spare/extra time activity [7, 16].

3- RESEARCH METHODOLOGY

The types of error that may occur during the development of software depend
upon many factors such as typographical errors, mixed-syntax errors(two dif-
ferent programming languages having same syntax with different meaning),
the programming approaches used, the skill level of software developers, the
size of the module, and types of software (application, system , embedded
etc.). In this paper, we emphasized on the typographical and mixed- syntax
errors committed by developers that are not reported by compilers. For the
motivation of this study, we considered an example of writing language C
code for swapping two integers A and B. Depending upon the types of de-
velopers, the following set of codes may be used (with third variable, without
using third variable, using bit-wise operator):

 (a)

Temp = A;

A = B;

B = Temp

 (b)

A=A+B;

B=A-B;

A=A-B;

 (c)

A=A^B;

B=A^B;

A=A^B;

Blocks (a), (b), and (c) may contain different types of typographical bugs and
may require different test cases to detect them. Though, we have highlighted
only three ways, there may be hundreds other ways to accomplish this task.
Hence, documenting the method selected from a set of candidate methods
will certainly help the testing team to get some clue about the possible typo-
graphical errors as well as the test cases that may not be relevant to the code.

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

98

For example, if the code block (a) is selected for current application, a tester
will be getting better idea about the kind of errors that may occur in it by run-
ning a test case. Even, a test case, that looks very promising, if executes the
erroneous block and does not trace out the intended errors, should be dis-
carded from the final test suite. We considered three sets (a1, a2, a3) of bug-
gy code for block (a).

 (a1)

A = Temp;

A = B;

B = Temp

 (a2)

Temp=A;

B =A;

A = Temp

 (a3)

Temp = A;

B = Temp;

A = B;

From the outcome of the test cases we may conclude which block of code has
been executed. The outcomes of three blocks (a1, a2, a3) for two test cases
have been shown in Table 1. From this table, it is clear that if two integers are
equal, only block (a1) gives error, where as other two do not, but if A and B
are different all of the three blocks give erroneous output. By looking into the
pattern of outcomes, a tester may conclude about the possible errors and can
send the useful feedback to the developing team. We assume that random
value assigned here will be different from the input values, although that case
may occur any time and can fail a test case.

Table 1 Test Cases with outcomes
R-Random value, P-Pass, F-Fail

TestCase OutCome

TC(A,B) a1(A,B) a2(A,B) a3(A,B)

TC(4,2) (2,R)P (4,4)P (4,4)P

TC(4,4) (4,R)P (4,4)F (4,4)F

4- MAIN OBJECTIVE

The main objective of this study is to find how software code documentation
can facilitate software testers to estimate about the possible buggy code. The
particular questions of the current research are:
 Can software documentation be helpful in optimum test case selection

from the set of candidate test cases?
 Can software documentation provide any clue to software tester about the

typographical errors that may occur during software development?

Role of Quality Source Code Documentation Parashar et al

99

1. #include <stdio.h>
2. void reorder(float*a,float*b, float*c)
3. {
4. float temp1, temp2;
5. if((*b>*a)&&(*a>*c))F4

6. {
7. temp2=*a; *a=*b; *b=temp2;
8. }
9. else
10. if((*a>*c)&&(*c>*b))F7

11. {
12. temp1=*b; *b=*c; *c=temp1;
13. }
14. else
15. if((*c>*a)&&(*a>*b))F8

16. {
17. temp1=*b; temp2=*a; *a=*c; *b=temp2;
18. *c=temp1;
19. }
20. else
21. if((*b>*c)&&(*c>*a))// F9

22. {
23. temp1=*c; temp2=*a; *a=*b;
24. *b=temp1; *c=temp2;
25. }
26. else
27. if((*c>*b)&&(*b>*a))F10

28. {
29. temp2=*a;
30. *a=*c;
31. *c=temp2;
32. }
33. }
34. int main()
35. {
36. char type;
37. float a,b,c,s,area
38. cout<<"Enter sides:(a,b,c)\n";
39. cin>>a>>b>>c;
40. reorder(&a,&b,&c);
41. if(a<=0 ||(b<=0) ||(c<=0))
42. {
43. cout<<"Wrong Input\n\n";
44. goto label;
45. }
46. else
47. if(b+c<=b)//if(b+c<=a)F1

48. {
49. cout<<"Invalid\n";
50. goto label;

51. }
52. else
53. if((a==b)&&(b==c))
54. {
55. type='e';
56. cout<<"Equilateral \n";
57. }
58. else
59. if((a==b)||(a==c)) F2

60. {
61. type='i';
62. cout<<"Isosceles:\n";
63. }
64. else
65. if(a*2==(b*2+c*2)) F3

66. {
67. type='r';
68. cout<<"Right Angled :\n";
69. }
70. else
71. if(a!=b!=c)//if((a!=b)&&(b!=c)))F11

72. {
73. type='s';
74. cout<<"Scalene Triangle:\n";
75. }
76. else
77. {
78. cout<<"No-Category\n"; goto label;
79. }
80. switch(type)
81. {
82. case 'r':
83. area=b*c/2;
84. break;
85. case 'e':
86. area=a*2*sqrt(3)/4; F5
87. break;
88. case 'i':
89. case 's':
90. s=(a+b+c)/3;//floats=(a+b+c)/2;F6

91. area=sqrt(s*(s-a)*(s-b)*(s-c));
92. }//end switch
93. cout<<"Area of the Triangle:"<<area;
94. label: return 0; } //end main

Figure 1 TriTypArea program

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

100

5- EXPERIMENTAL SETUP AND RESULTS

5-1 Experimental Setup

In order to check the results of our proposal, we have coded a program
TriTypArea (Fig. 1) in language C which is a modified version of a very pop-
ular program TriTyp.java (http://cs.gmu.edu /~pammann /637/ code/ trian-
gle/TriTyp.java). This program determines the type of a triangle (Scalene,
Equilateral, Isosceles, Right Angle, and Invalid triangle) on the basis of its
dimensions. The program TriTyp has been considered by many researchers
for software testing [3],[23],[24] due to its simplicity and effectiveness. In or-
der to determine the time of execution of test cases, we have taken following
functions:

QueryPerformanceFrequency();

QueryPerformanceCounter();

To find the accuracy of test case execution time, we executed a test case
thrice and then calculated the average time of its execution. The program
TriTypArea has been executed using Dev-C++ 4.9.9.2 compiler and com-
puter‎with‎‎specifications,‎Intel®‎Core™‎2‎Duo‎Core‎CPU‎T9300‎@2.50‎GHZ‎
and 1.99 GB RAM. TriTypArea compared to TriTyp, performs two additional
functions 1) arrange the sides in descending order, and 2) calculate the area
of triangle. Thus, our candidate program not only determines the type of a
triangle but also calculates the area of a valid triangle.

We have not imposed any constraints [5],[23],[24] on entering sides of triangle
as it made our program more user friendly and arranging the sides in de-
scending order helped in reducing the size of program. We have used seeded
faults (shown in Fig. 1 with the help of bold lines), which are very close to ac-
tual coding scenario. The partial set of test cases, seeded faults and the time
of execution of test cases have been shown in Table 4. The grey cells in the
table represent the disagreement between expected and actual outcome, and
hence represent a successful test case. The black cells represent an unsuc-
cessful test case, i.e. one which does not reveals the intended faults. The
formation of this partial test suite has been influenced by ‎[9] and Boundary
Value Analysis (BVA).

5-2 Results and Analysis

The area of a triangle can be calculated either by using specific formula corre-
sponding‎to‎the‎type‎of‎triangle‎or‎general‎Heron’s‎Formula.‎The‎different‎for-
mulae are coded differently and hence may lead to different types of bugs. To
detect these bugs, specific set of test cases is needed. We have identified

Role of Quality Source Code Documentation Parashar et al

101

http://cs.gmu.edu/

some expressions (Exp1, Exp2, Exp3), which generate identical outcome for
same input value. We believe that there may be numerous such expressions
in real world that may mislead software testing team due to their magical
characteristics. Hence, from testing perspectives, the set of inputs that satis-
fies these expressions, must be excluded. e.g.

a+a = a*a ¥ a{0,2} (Exp1)
a

p
 = a

q
 ¥ a{0,1} (Exp2)

a
2
 = a*2 ¥ a{0,2} (Exp3)

The presence of such test cases in the final test suite may be alarming as
their execution does not expose the faults and provides fake confidence in the
software testing. The situation may arise specifically in regression testing
where a tester has limited time and may be one test case is selected for exe-
cution from each category of candidate test cases.

If the software documentation provides any clue of the presence of expres-
sions which generate same value for some input, a tester can easily exclude
those test inputs. Such practice not only helps in building confidence in soft-
ware testing but also avoids the execution of a fail test case. By fail test case,
we mean a test case that does not expose the bug it is intended to expose.

In the test suite as shown in Table 3, test case TC7 (2, 2, 2) is such a test
case. It does not expose fault F5 due to the reason that fault F5 i.e. ar-
ea=a*2*sqrt(3)/4 contains Exp3 in it. We have discussed in this section that
Exp3 should not be executed for the input value a{0,2} due to its misleading
outcome. We consider such test cases very dangerous to the application and
we argue that such test case execution should be avoided at the time of test-
ing.

In this study, it has been observed that the fault F11 (Fig. 1: shown with dark
black line) exists in the code but there is no test case that surfaces it out. The
set of test cases that may surface out this fault require a>b>(c=1). While ana-
lyzing the above expression, it was found that the test case that may cover
F11 is actually a test case that represents invalid triangle. Since, the invalid
triangle is top in the hierarchy of nested-if structure, therefore the control will
never come to condition corresponding to fault F11.This fault will only be ex-
posed if the order of the conditions is changed and F11 condition is prioritized
in the nested-if structure. This rearrangement may further lead to some se-
mantic errors. It is believed that software testing is an art and the outcome of
software testing not only depends on the test suite execution but its success
depends on many other factors like tester state-of-mind at the time of execu-
tion, time constraint, time-of–day‎of‎ test‎ suite‎execution,‎and‎ tester’s‎experi-
ence etc. [9],[19],[25]. In the current practice of software development, soft-
ware testing goes parallel with software development, therefore, software test-
ing team finds time for deep analysis of code behavior and hence, they can
form better test suite. For the final execution of test cases, at the time of re-
gression testing, we have applied fault-based prioritization method presented

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

102

in ‎[26] which select a test case which determines a fault that has been allot-
ted minimum time for its execution in the given test suite. The main steps of
the technique have been highlighted in Fig. 2:

 Inputs:

TF: Total faults not yet detected

t: permissible time budget

Fi: ith. fault

T:set of test cases

Ouput:

P:prioritized test suite

Prioritize(T,P,TF, t)

1. repeat (step 2- step 6) until TF is emp-
ty or t >TB

2. Select fault Fi from TF which takes

least time for execution.

3. If Fi is detected by more than one test
case say Ti and Tj, select the one which

detects it with minimum time. Let the

test case selected be Ti..

4. Include test case Ti to P.
5. Minus fault Fi and other faults detected

by test case Ti from TF. Add time ti to

t.

6. Minus Ti from T.

Figure 2 Main steps of the prioritization algorithm

Table 2 Prioritized Test Suite for Regression Testing
Test Case Faults- Exposed Time(µs)

TC08 F5 223
TC09 F2,F6,F9,F10 169
TC10 F6,F7,F8 127
TC11 F4,F6 103
TC35 F1,F3 333

The prioritized set as a result formed has been shown in Table 2. For the de-
tection of F5, the test case TC08 has been selected from the candidate test
cases, though test case TC07 seems more promising due to its time of execu-
tion. If software documentation is not in place, TC07 would have been select-
ed for final execution and it would not have exposed the intended fault. Thus,
software documentation not only helps in appropriate test case selection but
also provide meaningful feedback to developing team. The developing team
will find it easy to fix the bugs as they are provided with the information about
the particular code that is erroneous with the possible type of errors.

Role of Quality Source Code Documentation Parashar et al

103

Table 3 Partial Test suite for TriTypArea (gray cells show faults)

TC a,b,c Class Act_Class Area Act_Area Fault (µs)

TC1 1,2,3 Invalid Right Anled NA 1.0 F1 293

TC2 1,3,2 Invalid RightAngled NA 1.0 F1 335

TC3 2,1,3 Invalid RightAngled NA 1.0 F1 385

TC4 2,3,1 Invalid RightAngled NA 1.0 F1 406

TC5 3,1,2 Invalid RightAngled NA 1.0 F1 423

TC6 3,2,1 Invalid RightAngled NA 1.0 F1 448

TC7 2,2,2 Equi Equi 1.73 1.73 NIL (Exp. F5) 208

TC8 3,3,3 Equi Equi 3.89 2.59 F5 223

TC9 3,4,4 Equi Scale 5.56 0.52 F2,F6,F9,F10 169

TC10 4,3,4 Equi Iso 5.56 0.52 F6,F7,F8 127

TC11 4,4,3 Equi Iso 5.56 0.52 F4,F6 103

TC12 3,4,5 Right Scale 6.0 0.0 F3,F6 279

TC13 3,5,4 Right Scale 6.0 0.0 F3,F6 241

TC14 4,3,5 Right Scale 6.0 0.0 F3,F6 215

TC15 4,5,3 Right Scale 6.0 0.0 F3,F6 225

TC16 5,3,4 Right Scale 6.0 0.0 F3,F6 250

TC17 5,4,3 Right Scale 6.0 0.0 F3,F6 270

TC18 4,5,6 Scalene Scale 9.92 0.0 F6 162

TC19 4,6,5 Scalene Scale 9.92 0.0 F6 217

TC20 5,4,6 Scalene Scale 9.92 0.0 F6 243

TC21 5,6,4 Scalene Scale 9.92 0.0 F6 276

TC22 6,4,5 Scalene Scale 9.92 0.0 F6 308

TC23 6,5,4 Scalene Scale 9.92 0.0 F6 331

TC24 1,1,100 Invalid Iso NA 1.0 F1,F6,F8 127

TC25 1,100,1 Invalid Iso NA 1.0 F1,F6,F9 218

TC26 100,1,1 Invalid NO-category NA NA F1 127

TC27 1,2,200 Invalid NO-category NA NA F1 443

TC28 1,200,2 Invalid NO-category NA NA F1 368

TC29 2,200,1 Invalid NO-category NA NA F1 323

TC30 2,1,200 Invalid NO-category NA NA F1 281

TC31 200,1,2 Invalid NO-category NA NA F1 241

TC32 200,2,1 Invalid NO-category NA NA F1 201

TC33 1,199,200 Invalid Right NA 99.5 F1,F3 355

TC34 1,200,199 Invalid Right NA 99.5 F1,F3 367

TC35 199,1,200 Invalid Right NA 99.5 F1,F3 333

TC36 199,200,1 Invalid Right NA 99.5 F1,F3 380

TC37 200,1,199 Invalid Right NA 99.5 F1,F3 382

TC38 200,199,1 Invalid Right NA 99.5 F1,F3 380

TC39 100,199,1 Invalid NO-category NA NA F1,F3 452

TC40 199,1,100 Invalid NO-category NA NA F1,F3 494

TC41 199,100,1 Invalid NO-category NA NA F1,F3 474

TC42 1,100,100 Iso Scale 49.99 2194.44 F1,F6,F9, F10 466

TC43 100,1,100 Iso Iso 49.99 2194.44 F7,F8,F6 457

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

104

5-3 Threat to validity

The main threat to the validity of this study is that the selection of appropriate
test cases for the testing is done manually.Such selection may be errorenous
and time cosuming especially for large or complex software. The results of
this study are mainly depending upon the internal software code documenta-
tion.The study can not be implemented to software which have not been doc-
umented properly or where the software documentation is not updated with
the software modification.

6- CONCLUSION

In this paper, we highlighted the importance of software documentation in the
field of software testing. From the experimental setup, it is clear that if proper
software documentation is in-place, it can help the testing team in building and
executing relevant test cases. The outcome of such testing strategies will be
very useful to software industry. The study also highlighted the faults which
are present but are not detected by the present set of test cases due to their
unreachable positions in the software. To the best of our knowledge, software
documentation so far has been used to understand the behavior of software
for better software development and its maintenance but it has not been re-
lated to software testing for test suite minimization, reduction, or selection.
Nowadays, the testing has become very challenging due to software evolu-
tions, different software development approaches, tight time constraints, and
software complexity. Thus, it is highly desirable to form a test suite that de-
tects maximum faults or performes maximum code coverage with in allotted
time. Though, in this study, it has been observed that the volume of fail test
cases is very low, but we believe that the execution of such test cases is very
alarming and misleading to testing team as it hides the faults and provide
false confidence in software testing. Thus, their detection and elimination from
the final test suite is highly desirable. The detection of such test cases may be
done manually for small software systems but for large and complex systems,
this process need to be automated. In the current study, we have used only
arithmetic expressions which may produce same output for some set of in-
puts; the study can be extended further for all types of expressions. This prior-
itization technique based on the software documentation can be very benefi-
cial for successful testing of big software which may contain thousands of
methods and each method in terms may have several canditate methods.

REFERENCES

[1] B. Beizer, Software Testing Techniques, Second Edition. Published by
dreamtech, New Delhi, pp. 135-143, 2008.

Role of Quality Source Code Documentation Parashar et al

105

[2] E.‎ Engstrom,‎ M.‎ Skoglund,‎ and‎ P.‎ Runeson,‎ “Empirical Evaluations of
Regression Test‎ Selection‎ Techniques:‎ A‎ Systematic‎ Review,”‎ Proc.‎ of‎
ESEM’08,‎Oct‎9-10, pp. 22-31, 2008.

[3] A. Gotlieb, M. Petit. “Path-Oriented‎Random‎Testing,”‎Proc. IWRT, pp. 28-35,
2006.

[4] P.‎Parashar,‎A.‎Kalia,‎R.‎Bhatia,‎“Pair-wise Time-ware Test Case Prioritization
for‎Regressiojn‎Testing,”‎Proc.‎ICISTM‎2012,‎CCIS‎285,‎pp.‎176-186, 2012.

[5] S.‎ Yoo,‎ and‎ M.‎ Harman,‎ “Regression‎ Testing‎ Minimization,‎ Selection‎ and‎
Prioritization:‎A‎Survey,”‎Soft.‎Test.‎Verif.‎Reliab.,‎pp.‎67-120, 2007.

[6] J. Hartmann, S.‎Huang,‎S.‎Tilley,‎“Documenting Software Systew with views
II: An Integrated Aproach Based on XML,” SIGDOC’01,‎pp. 237-246, 2001.

[7] A. Forward, and T.C. Lethbridge, “Software Engineering Documentation
Priorities: An Industrial Survey,”‎Submitted to CASCON, pp. 23-31, 2002.

[8] W. John. “Practical Support for CMMI-SW-Project Documentation using IEEE
Software Engineering‎Standards,”‎C-SPIN’06,‎pp. 267-280, 2006.

[9] G.J. Mayers, The Art of Software Testing, Second Edition.Published by John
Wiley and Sons Inc. Hoboken, New Jersey, pp. 107-121, 2004.

[10] R.S. Pressman, Software‎ Engineering‎ :A‎ Practitioner’s‎ Approach,‎ Fifth
Edition. Publisher Thomas Casson, pp. 450-467, 2001.

[11] M. Ratzmann, and C.D. Young, Software Testing and Internationalizaion.
Lemoine International, Inc. Salt Lake City, pp. 241-247, 2003.

[12] P.‎Parashar,‎A.‎Kalia,‎R.‎Bhatia,‎“Change‎Impact‎Analysis:‎A‎Tool for Effective
Regression‎Testing,”‎Proc.‎ICISTM‎2011,‎CCIS‎141,‎pp.‎160-169, 2011.

[13] C.B. Sergio, A. Nicolas , and M.O.‎ Kathia,‎ “A Study of the Documentation
Essential‎to‎Software‎Maintenance,”‎In‎SIGDOC’05,‎pp. 68-75, 2005.

[14] T. Xie, N. Tillmann, D.H. Jonathan,‎ “Future of Developer Testing : Building
Quality‎in‎Code,”‎Proc.‎of‎FoSER’2010,‎pp. 415-420, 2010.

[15] A. Forward, and T.C. Lethbridge, “The Relevance of Software Documentation,
Tools and Technologies: A Survey,”‎Proc.‎Of‎DocEng’02,‎ACM,‎New‎York, pp.
26-33, 2002.

Int. J. of Software Engineering, IJSE Vol.7 No. 2 July 2014

106

[16] A. Forward, and T.C. Lethbridge,‎“Qualities of Relevant Software Documenta-
tion:‎An‎Industrial‎Study,”‎Proc. ICSE 2003, pp. 63-71, 2003.

[17] B. Thomas, and S. Tilley, “Documentation for Software Engineers: What is
needed‎to‎aid‎system‎understanding,”‎SIGODC’01,‎pp. 235-236, 2001.

[18] V. Marcello, and R.C.‎ Curtis,‎ “An overview of Industrial Software
Documentation‎Practices,”‎CONICYT, pp. 179-186, 2000.

[19] L. Tan, D. Yuan, and Y. Zhou, “HotComments: How to Make Program
Comments More Useful?,” HotOS’07,‎pp. 49-54, 2007.

[20] A. Tsybin, and L.‎Lyadova,‎“Software Testing‎and‎Documenting‎Automation,”‎
International Journal of Information‎Technologies‎and‎Knowledge”.‎Vol.‎2,‎pp.
267-272, 2008.

[21] I. Timea, and P.‎Barbara,‎ “On the Role of Communication, Documentation
and Experience during System‎ Testing:‎ An‎ Interview‎ Study,”‎ Proc.
PREMIMUM’08,‎pp. 23-47, 2008.

[22] C. Kaner,‎“Liability‎for‎Defective‎Documentation,”‎Proc.‎SIGDOC’03,‎pp. 192-
197, 2003.

[23] D. Berndt, L. Fisher, J. Johnson, J. Pinglikar, A. Watkins, “Breeding Software
Test Cases with Genetic Algorithms,”‎Proc.‎of‎ICSS’03,‎pp. 131-138, Jan 6-9,
2003.

[24] H. Agrawal, J.R. Horgan, E.W. Krauser, S. A. London, “Incremental Regres-
sion Testing,”‎Proc. ICSM 1993, pp. 348–357, 1993.

[25] E. Jon, L. Tan, L. Patrick,‎“Do Time of Day and Developer Experience Affect
Commit Bugginess?,”‎Proc.‎MSR’11,‎pp. 153-162, 2011.

[26] P. Parashar, A. Kalia,‎ R.‎ Bhatia,‎ “Fault-based Time-aware Test Case
Prioritization‎for‎Regression‎Testing,”‎Proc.‎ISC’‎2011,‎‎pp. 74-83, 2011.

Role of Quality Source Code Documentation Parashar et al

107

	Role of Quality Source Code Documentation in Software Testing
	SOURCE Citation

	Regular Paper Title

