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Abstract 

 

Two organic acids were trialled for the extraction of calcium from steelmaking blast furnace 

slag for the purpose of precipitated calcium carbonate (PCC) production: succinic and acetic 

acids. While the leaching performance of succinic acid was superior, carbonation of its 

leachate did not result in the production of PCC, but rather the precipitation of calcium 

succinate, and only after the use of pH buffering agents (sodium hydroxide or bicarbonate). In 

contrast, carbonation of the acetic acid leachate resulted in the production of PCC, also with 

the aid of buffering agents. This discrepancy highlights the need for a combination of 

chemical, mineralogical and morphological analytical techniques for the accurate 

                                                 
a
 Present address: University of Guelph, School of Engineering, Guelph, Canada, N1G 2W1. 
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characterization of carbonation precipitates for future publications in this field. Additional 

effects observed in this study were the low atom-efficiency of the acids for calcium leaching, 

at ~20–30% of the stoichiometric value, the low extraction selectivity but high carbonation 

selectivity between calcium and magnesium, and the contamination of the formed PCC’s with 

small amounts of co-leached aluminium and silicon. Further work is warranted on the 

purification of this PCC synthesis route. 

 

Keywords: mineral carbonation; precipitated calcium carbonate; acetic acid; succinic acid; 

blast furnace slag; calcium succinate. 

 

1. Introduction 

 

The production of precipitated calcium carbonate (PCC) from natural and waste-derived 

alkaline materials has been a major focus of research due to the numerous commercial uses 

for this material such as: filler, pigment and colour stabilizer in papers, paints, polymers and 

pharmaceuticals applications; pH buffer and neutralizer in environmental and water treatment 

applications; and as a component of foodstuffs, fertilizers and animal feed (Wypych, 2010; 

CCA Europe, 2012). An ideal calcium leaching agent should have high extraction efficiency, 

and less affinity for the alkaline earth elements than the carbonate ion to allow the 

precipitation of carbonates upon pH-swing (Santos et al., 2014). Kakizawa et al. (2001) 

proposed acetic acid for the extraction of calcium from silicate minerals, as this acid is 

stronger than silicic acid and weaker than carbonic acid. They theorized that both the 

extraction and the crystallization reactions could occur spontaneously when acetic acid is 

used. However, precipitation extent was limited at 20% as re-dissolution of CaCO3 occurs 

when the CO2 partial pressure is exceedingly high. 
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Eloneva et al. (2008) was able to achieve higher precipitation extent (up to 74 %) with 

the aid of NaOH as an acid neutralization agent to precipitate calcium carbonate crystals for 

blast furnace slag (BFS). Baldyga et al. (2010, 2011) compared three different organic acids, 

adipic, acetic and succinic, for the leaching of calcium from the natural mineral wollastonite 

(CaSiO3). The use of succinic acid was recommended due to its greater extraction extent and 

favourable kinetics. Also reported was that significant carbonation induced precipitation of 

calcium from succinic acid leachate could be achieved in the absence of pH buffers; 

precipitation yield was 90%, compared to only 30% in the case of the acetic acid leachate. 

The initial aim of the present study was to confirm if succinic acid also performs better 

than acetic acid in the case of PCC synthesis using BFS as the calcium source. In the course 

of the study, upon extensive characterization of the precipitates, discrepancies were found 

between the materials formed from the different leachates. These findings have not been 

reported in existing literature and present some important insights to the field. The focus of 

this technical note is the reporting of these discrepancies and the description of techniques for 

the accurate characterization of carbonation precipitates. 

 

2. Materials and methods 

 

Granulated blast furnace slag (GBFS) from a steelworks was used as the starting 

material. Its chemical composition, determined by X-ray fluorescence (XRF, Panalytical 

PW2400), consisted mainly of CaO (41.0 wt%), SiO2 (36.0 wt%), Al2O3 (11.0 wt%) and 

MgO (8.4 wt%). Its mineralogical composition, determined by X-ray diffraction (XRD, 

Philips PW1830), was found to be mainly amorphous. Preference was given to the use of 

actual slag rather than synthetic materials as in prior work (Bodor et al., 2013) we have 

observed discrepancies in the reactivity of mineral phases present in the slags relative to those 
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same phases synthetically produced, which may be attributable to solid solution effects and 

differences in cooling path. To increase specific surface area of GBFS, beneficial to 

extraction, the slag was run through a Retsch ZM100 centrifugal mill (1400 rpm, 500 μm 

sieve mesh). The mean particle diameter (D[4,3]) of the resulting material, determined by wet 

laser diffraction (LD, MalvernMastersizer S), was 138.3 μm, and its geometrical specific 

surface area, determined by LD, was 0.47 m
2
/g. 

Analytical grade succinic acid (HOOC-(CH2)2-COOH) and acetic acid (CH3COOH) were 

used for the calcium extraction stage. The extraction was done in two steps, to moderate 

acidity and thus improve leaching selectivity (Chiang et al., 2014). In each step, 731 ml of 

fresh 0.5 M acid solution was mixed with the solids (100 g milled GBFS in the first step, and 

the residual solids from the first step in the second step) for 60 minutes at 80 °C and 1000 rpm 

under air atmosphere in a Büchi Ecoclave reactor (1.1 liter internal volume, equipped with 

turbine impeller mixer, electrically heated and water cooled). The slurry was vacuum filtered 

(Whatman No. 2 filter paper) to separate the leachate solution from the residual solids. 

The leachates from the first and second extraction steps were combined and split into two 

equal fractions. Each fraction was subjected to carbonation in the Ecoclave reactor for 60 

minutes, at temperatures between 60–120 °C, and applying CO2 partial pressures between 2–

50 bar. For some experiments, analytical grade sodium bicarbonate (NaHCO3) or sodium 

hydroxide (NaOH) were included, in equimolar amounts to the organic acid concentration 

used in the extraction stage for each leachate, to buffer the pH and induce precipitation. 

Precipitates were vacuum filtered, washed thoroughly with DI water to remove soluble 

organic compounds, and dried at 105 °C for 24 hours. 

The extraction leachates and post-carbonation filtered solutions were analyzed for pH 

and for aqueous concentrations of Al, Ca, Mg and Si by inductively coupled plasma mass 

spectrometry (ICP-MS, Thermo Electron X Series). The mineralogical, chemical and 
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morphological properties of the post-carbonation precipitates were characterized by XRD, 

XRF, thermal gravimetric analysis with differential scanning calorimetry (TGA–DSC, TA 

Instruments Q500), Fourier transform infrared spectroscopy (FTIR, Perkin Elmer Frontier), 

and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX, 

Philips XL30 FEG). 

 

3. Results and discussion 

 

A comparison is made between the extraction efficiency of acetic and succinic acid, 

using 0.5 M concentrations in each of two extraction steps. This concentration results in a 2:1 

calcium-to-acid molar ratio at each extraction step, or 1:1 in total. The purpose of using this 

concentration is assessing how close to stoichiometric the extraction extent is. The results of 

aluminium, calcium, magnesium and silicon extraction from milled GBFS are presented in 

Figure 1. The leaching of aluminium and silicon is better contained with acetic acid, though 

the leaching extent with succinic acid is also rather low (maximum 2.7% silicon extraction). 

Both Ca and Mg are extracted in equivalent amounts fraction-wise, so there is no selectivity 

between these two alkaline components, although substantially more calcium is extracted 

since BFS is richer in CaO than in MgO (41.0 wt% versus 8.4 wt%, respectively). Leaching 

of Ca and Mg is substantially greater in the first step than in the second step, but the 

difference is larger in the case of acetic acid (~3x) than for succinic acid (~1.8x). Also, the 

dicarboxylic succinic acid proves to be more effective in extracting the alkaline components, 

reaching 30-31 % total extraction extent compared to 21 % for the monocarboxylic acetic 

acid. The leaching extent of succinic acid surpasses that of acetic acid both in the first stage, 

by ~5 %, and in the second stage, also by ~5 %. These results are in agreement with the 

findings of Baldyga et al. (2010, 2011) for the leaching of calcium from wollastonite. 
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The leachates from the extraction stage were subjected to carbonation treatment with the 

intent of producing precipitated calcium carbonate (PCC). In the tests performed, besides 

using leachates produced using the two different organic acids (succinic and acetic acids), 

three additional parameters were varied for investigation: temperature, CO2 partial pressure 

and pH buffering additive. 

The first test conducted used the same carbonation conditions that Baldyga et al. (2011) 

used to precipitate the most quantity of calcium from succinic acid leachate, namely: 80 °C, 

50 bar CO2, 60 minutes, and no additive. These conditions, however, did not result in the 

precipitation of solids in the present study. The same observation is reported by Eloneva et al. 

(2008) for the precipitation of calcium from calcium acetate solution, wherein only upon 

addition of NaOH to regulate the pH closer to 12 (from an original value of 6.5) significant 

precipitation occurred. Spontaneous carbonate mineral formation does not occur due to the 

fact that the acid dissociation constants of acetic and succinic acids (pKa = 4.7 and pKa1 = 4.2, 

respectively) do not fall in-between those of carbonic acid and silicic acids (6.3 and 9.8, 

respectively) (Domenico and Schwartz, 1998; Smith and Hong-Shum, 2003; Higson, 2004).; 

This is contrary to the theory of Kakizawa et al. (2001), which erroneously reported a pKa 

value of 3.6 for carbonic acid to inaccurately state that acetic acid fell in between the 

inorganic acids. Baldyga et al. (2011) may have obtained precipitation because the leaching of 

calcium from wollastonite was near completion in that study. In this case, since the acid was 

added in 1:1 acid to calcium molar ratio, it was largely consumed, and thus the pH of the 

leachate (not reported) was likely less acidic than in the present experiment (pH1st,extr = 4.4, 

pH2nd,extr = 3.7, pHcombined = 4.0). 

To induce precipitation, all other experiments performed in the present study used NaOH 

or NaHCO3 (which besides acting as a buffer, is also reported to increase the concentration of 

carbonic ions in solution (Chen et al., 2006)) as pH neutralizing additives. Results of 
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magnesium, aluminium, silicon and calcium precipitation from the extraction leachates after 

carbonation are presented in Figure 2. The temperatures (T) and CO2 partial pressures (PCO2) 

were regulated to account for CO2 solubility (i.e. low T with low PCO2, high T with high 

PCO2). 

For succinic acid leachates, no precipitate was obtained at 60 °C and 2 bar, even with 

NaHCO3 addition. At 90 °C and 6 bar, with both NaHCO3 and NaOH additions, precipitates 

were formed, accounting for 45–54 % of the calcium content of the succinic acid leachate. 

Magnesium did not appreciably precipitate under these conditions, but large fractions of 

aqueous Al and Si did precipitate. At 120 °C and 40 bar, with both pH buffers, further 

precipitation occurred, accounting for 69–74 % of the calcium and 6 % of the magnesium 

contents of the succinic acid leachate (this amount of Mg is equivalent to < 2 wt% of the 

amount of calcium precipitated). 

The precipitation extent was significantly better from acetic acid leachates (Figure 2), 

wherefrom 98–99 % of the calcium was precipitated. The amount of magnesium precipitation 

also increased substantially to 20–23 %. It is seen from Figure 2 that Al, Mg and Si 

precipitation is generally magnified when the higher combination of T and P was used. Given 

that Ca precipitation from acetic acid leachate was weakly affected by the carbonation 

conditions (T and P), it would thus be advisable to use the lower carbonation intensity to 

reduce energy demand of this processing stage and improve PCC chemical purity. 

The precipitated solids were analyzed to characterize their mineralogical and 

morphological properties. It was discovered during the present study that the precipitates from 

the succinic acid leachates differed substantially from those produced from acetic acid 

leachates. The succinic acid leachate precipitates had a distinct XRD pattern (Figure 3a), 

which does not match that of any carbonate mineral phase. The acetic acid leachate 

precipitates have an XRD pattern that matched well with the calcite polymorph of calcium 
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carbonate (CaCO3), as shown in Figure 3b. Further analyses were performed to characterize 

the succinic acid leachate derived precipitates. 

Figure 4a presents the TGA and DSC curves for the succinic acid leachate precipitate. It 

can be seen that the decomposition pattern does not match that of calcium carbonate, which 

decomposes with a single loss of mass between approximately 600–750 °C (Santos et al., 

2013), consisting of the decarbonation step of calcium carbonates, as described in Eq. 1. 

Instead, two distinct decomposition regions are seen, the first starting at 450 °C and the 

second beyond 670 °C. This two-step decomposition is characteristic of the thermal 

decomposition of dicarboxylates, including calcium succinate (Ca(C4H4O4)), according to Eq. 

2 (Patil et al., 1968): 

 

CaCO3  CaO + CO2         (1) 

    (2) 

 

To confirm the evidence from the TGA results, the FTIR spectrum of the succinic acid 

leachate precipitate was obtained, and is shown in Figure 4b. The spectrum was compared to 

compounds on the Spectral Database for Organic Compounds from the National Institute of 

Advanced Industrial Science and Technology (SDBSWeb, 2013) and the closest match found 

was that of magnesium succinate N-hydrate (Mg(C4H4O4)·nH2O) (a calcium variant is not 

available in the database), shown in the figure in-set, with the exception of the large peak near 

3400 cm
-1

, which represents the hydrate group (Patil et al., 1968). FTIR, however, does not 

distinguish the cation, and as EDX analysis of the precipitate confirmed it is composed 

primarily of calcium, carbon and oxygen (Figure 4c), it can be confirmed that the precipitate 

from the succinic acid leachate is in fact calcium succinate (Ca(C4H4O4)). The small DSC 
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peak near 140 °C (Figure 4a) and the small bump in the FTIR spectrum around 3400 cm
-1

 

suggest that the compound is only partly hydrated, possibly mono (Mathew et al., 1994). 

Figure 5 presents the morphology of the carbonation precipitates. Clearly, the 

morphology of the calcium succinate particles (Figures 5a and 5b) is very distinct from that of 

calcium carbonate particles (Figures 5c and 5d). These finding are in contrast with the 

reported results of Baldyga et al. (2011), who report to have precipitated calcium carbonate 

from succinic acid leachate. However, the reported morphology of those precipitates (shown 

in Figure 6 (Baldyga et al., 2011)) does not appear to represent calcium carbonate. Seeing that 

the authors characterized their products by EDX alone, which showed calcium, carbon and 

oxygen contents that also make up calcium succinate, their product might possibly have been 

a succinate. In their prior work, Baldyga et al. (2010) do not show any characterization of the 

reported precipitates. 

This discrepancy may also explain why Baldyga et al. (2010, 2011) were able to 

precipitate calcium without the addition of pH buffers. If the succinate anion precipitates with 

calcium, the regeneration of the acid is avoided, thus not lowering the pH, which otherwise 

prevents carbonate deposition. Bonfils et al. (2012) report similar findings on the use of 

disodium oxalate (Na2(C2O4)) for the extraction of magnesium from serpentine. They found 

that carbonation of the leachate resulted in the precipitation of magnesium oxalate dihydrate 

(Mg(C2O4)·2H2O), another organic acid salt, instead of the desired carbonate. This correlates 

well with the particularly low pKa of 1.27 of oxalic acid (Higson, 2004). The observations of 

Bonfils et al. (2012) and of the present study highlight the need for accurate characterization 

of carbonation products, as carbonates are not the only possible product. It is thus concluded 

that succinic acid is not a suitable calcium extractant for producing PCC, while acetic acid is. 
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4. Conclusions 

 

The results of this study show that when researching new leaching agents with the intent 

of extracting calcium from alkaline materials for subsequent production of precipitated 

calcium carbonate, two things are essential. First, it should be experimented if the carbonation 

of the leachate results in the formation of precipitates, and if to achieve this pH buffers are 

required, which will have an effect on processing costs and complexity. In the present study, 

it was found that precipitates did form when using both succinic and acetic acid leachates, but 

in both cases a buffering agent was required. Sodium hydroxide and sodium bicarbonate were 

tested, both induced the precipitation of calcium from the carbonated solution, and they were 

found to perform similarly, with NaOH being marginally more effective. Second, the 

precipitates formed must be characterized by one or more appropriate analytical technique, 

with XRD, TGA and/or FTIR being essential. Several works in existing literature omit 

extensive characterization of carbonation precipitates, under the assumption that precipitates 

are invariably carbonate minerals. In the present study, XRD provided the first evidence that 

the succinic acid leachate precipitates were not carbonates. Due to the lack of a matching 

compound in the available databases, further characterization by FTIR and TGA-DSC was 

required to identify the compound as being calcium succinate (likely mono-hydrate). SEM-

EDX also pointed to discrepancies between the precipitates, but this analysis was not 

sufficient since chemical composition is not a unique identifier. Hence, even though the 

leaching performance of succinic acid was found to be superior to that of acetic acid, of the 

two leaching agents, only acetic acid is suitable for the production of PCC. 

With acetic acid, further research and development are required for the production of 

marketable PCC. The results presented herein were not optimized, and greater calcium 

leaching extents are reportedly achieved using higher acid concentrations and lower 
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temperatures (Teir et al., 2007). Furthermore, partial magnesium precipitation and extensive 

aluminium and silicon precipitation occurred during carbonation, thus contaminating the 

formed product. Selective precipitation by means of tuned carbonation conditions, or 

purification of the leachate prior to carbonation, via physical separation, selective 

precipitation, or with the use of sorptive materials, is necessary to improve product qualities. 
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List of Figures: 

 

Figure 1. Results of organic acid extraction (first and second step, and total) of Mg, Al, Si 

and Ca from milled GBFS using 0.5 M succinic acid (left) or 0.5 M acetic acid (right) at 

80 °C for 60 minutes. 

Figure 2. Extent of Mg, Al, Si and Ca precipitation from 0.5 M succinic and acetic acid 

extraction leachates (expressed as percent fraction of leachates content that precipitated) after 

carbonation experiments at varying temperatures (60–120 °C), CO2 partial pressures (2–

40 bar) and with different additives (0.5 M NaHCO3 or NaOH). 

Figure 3. X-ray diffractograms of post-carbonation precipitates from succinic (a) and acetic 

(b) acid leachates. 

Figure 4. Thermal gravimetric and differential scanning calorimetry curves of post-

carbonation precipitate from succinic leachate (a); FTIR spectrum of post-carbonation 

precipitate from succinic leachate (inset of magnesium succinate N-hydrate obtained from 

SDBSWeb (2014)) (b); EDX spectrum of gold-coated post-carbonation precipitate from 

succinic leachate (c). 

Figure 5. Morphology of post-carbonation precipitates from succinic (a, b) and acetic (c, d) 

acid leachates, visualized by SEM. 

Figure 6. Morphology of post-carbonation precipitates from succinic acid leachate visualized 

by SEM by Baldyga et al. (2011). Reprinted from Chemical Engineering Research and 

Design, Vol. 89, No. 9, Baldyga et al., 1841–1854, Copyright 2011, with permission from 

Elsevier (license number 3322710276944). 
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