Document Type
Article
Publication Date
6-15-2014
Keywords
AOD slag, mineral carbonation, compressive strength, mineralogy analysis, microstructure, leaching
Abstract
Non-stabilized Argon Oxygen Decarburisation (AODNS) slag in powdered form was examined for its carbon dioxide sequestration capacity and for its potential utilization in the fabrication of high value building materials. The curing of the sample was carried out in two accelerated carbonation environments: i) in a carbonation chamber, maintained at atmospheric pressure, 22 °C, 5 vol.% CO2 and 80% RH; and ii) in a carbonation reactor, where the CO2 partial pressure (pCO2) and temperature could be further increased. In the carbonation chamber, an average compressive strength of over 20 MPa, on a 64 cm3 cubic specimen, was obtained after one week of curing, which is sufficient for many construction applications. Further carbonation resulted in a linear increase of strength up ~30 MPa after three weeks. The CO2 uptake followed a similar trend, reaching a maximum of 4.3 wt.%. In the reactor, the compressive strength improved with an increase in pCO2 up to 8 bar, temperature up to 80 °C, and duration up to 15 h where the maximum CO2 uptake was 8.1 wt%. The reduction in porosity in the carbonated specimens was approximately in line with the strength gain in the samples. Phase analysis by X-ray powder diffraction and inspection by scanning electron microscopy showed the precipitation of calcite and formation of significant amounts of amorphous material after carbonation. Infrared spectroscopy also pointed to the presence of aragonite and vaterite. In the carbonation chamber, the calcite morphology was uniform throughout the specimen. In the reactor, however, the calcite crystals near the outer edges of the cubes had different morphology than those near the core. Carbonation of the slag resulted in the reduction of basicity by up to one pH unit, and contributed to controlling the leaching of several heavy metals and metalloids.
Faculty
Faculty of Applied Science & Technology
School
School of Chemical and Environmental Sciences
Journal
Chemical Engineering Journal
Version
Post-print
Peer Reviewed/Refereed Publication
yes
Terms of Use
Terms of Use for Works posted in SOURCE.
Copyright
© 2014 Elsevier B.V. All rights reserved.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Original Publication Citation
Salman, M., Cizer, Ö., Pontikes, Y., Santos, R. M., Snellings, R., Vandewalle, L., ... Van Balen, K. (2014). Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material. Chemical Engineering Journal, 246, 39-52. doi:10.1016/j.cej.2014.02.051
SOURCE Citation
Salman, Muhammad; Cizer, Özlem; Pontikes, Yiannis; Santos, Rafael M.; Snellings, Ruben; Vandewalle, Lucie; Blanpain, Bart; and van Balen, Koen, "Effect of Accelerated Carbonation on AOD Stainless Steel Slag for Its Valorisation as a CO2-sequestering Construction Material" (2014). Faculty Publications and Scholarship. 23.
https://source.sheridancollege.ca/fast_chem_publ/23
Comments
9 November 2016: At the time of publication, Sheridan College author Rafael M. Santos was associated with the Katholieke Universiteit Leuven in Belgium.