Revisiting Circular-based Random Node Simulation

Document Type

Conference Proceeding

Publication Date

9-28-2009

Keywords

stochastic geometry, Monte Carlo simulation, spatial distribution, cellular communication, statistical modeling, statistical analysis, mobile radio, network geometry, cellular radio, mobile communication, path loss, network deployment

Abstract

In literature, a stochastic model for spreading nodes in a cellular cell is available. Despite its existence, the current method does not offer any versatility in dealing with sectored layers. Of course, this needed adaptability could be created synthetically through heuristic means. However, due to selective sampling, such practice dissolves the true randomness sought. Hence, in this paper, a universal exact scattering model is derived. Also, as an alternative to exhaustive simulation, a generic close-form path-loss predictor between a node and a BS is obtained. Further, using these results, an algorithm based on the superposition principle is proposed. This will ensure greater emulation flexibility, and attain a heterogeneous spatial density.

Faculty

Faculty of Applied Science and Technology (FAST)

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
GOAL 9: Industry, Innovation and Infrastructure

click icon to learn more