Document Type

Article

Publication Date

2013

Keywords

shock tube, area contraction, shockwave

Abstract

Numerical study into the effects of area contraction on shock tube performance has been reported in this paper. The shock tube is an important component of high speed fluid flow test facility was designed and built at the Universiti Tenaga Nasional (UNITEN). In the above mentioned facility, a small area contraction, in form of a bush, was placed adjacent to the diaphragm section to facilitate the diaphragm rupturing process when the pressure ratio across the diaphragm increases to a certain value. To investigate the effects of the small area contraction on facility performance, numerical simulations were conducted at different operating conditions (diaphragm pressure ratios P4/P1 of 10, 15, and 20). A two-dimensional time-accurate Navier-Stokes CFD solver was used to simulate the transient flow in the facility with and without area contraction. The numerical results show that the facility performance is influenced by area contraction in the diaphragm section. For instance, when operating the facility with area contraction using diaphragm pressure ratio (P4/P1) of 10, the shock wave strength and shock wave speed decrease by 18% and 8% respectively. 1.

Faculty

Faculty of Applied Science & Technology (FAST)

Journal

4th International Conference on Energy and Environment 2013 (ICEE2013)

Volume

16

Version

Publisher's version

Terms of Use

Terms of Use for Works posted in SOURCE.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Original Publication Citation

Mohsen, A., Yusoff, M.Z. & Alfalahi, A (2013). The effects of area contraction on the performance of UNITEN's shock tube: Numerical study. IOP Conference Series: Earth and Environmental Science. 16. 10.1088/1755-1315/16/1/012111.

Included in

Engineering Commons

Share

COinS
GOAL 9: Industry, Innovation and Infrastructure

click icon to learn more