Faculty Supervisor

Dr. Haya El Ghalayini

Date of Defense

Fall 12-12-2020

Program Name

Honours Bachelor of Computer Science (Mobile Computing)

School

Applied Computing

Keywords

machine learning, bitcoin, time series forecasting, N-BEATS, deep learning

Department

Faculty of Applied Science & Technology (FAST)

Description

This study evaluates the predictive power of the N-BEATS deep learning architecture trained on Bitcoin daily, hourly, and up-to-the-minute data in comparison with other popular time series forecasting methods such as LSTM and ARIMA.

Abstract

The use of computationally intensive systems that employ machine learning algorithms is increasingly common in the field of finance. New state of the art deep learning architectures for time series forecasting are being developed each year making them more accurate than ever. This study evaluates the predictive power of the N-BEATS deep learning architecture trained on Bitcoin daily, hourly, and up-to-the-minute data in comparison with other popular time series forecasting methods such as LSTM and ARIMA. Prediction errors are measured with Mean Average Percentage Error (MAPE), and Root Mean Squared Error (RMSE). The results suggest that the developed N-BEATS model has promising predictive power compared to LSTM and ARIMA models.

Terms of Use

Terms of Use for Works posted in SOURCE.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS