Document Type

Article

Publication Date

7-2013

Keywords

bioleaching, mineral processing, waste processing, alkaline materials, nickel

Abstract

Bioleaching is a potential route for the valorisation of low value natural and waste alkaline materials. It may serve as a pre-treatment stage to mineral carbonation and sorbent synthesis processes by increasing the surface area and altering the mineralogy of the solid material and by generating an alkaline rich (Ca and Mg) aqueous stream. It may also aid the extraction of high value metals from these materials (e.g. Ni), transforming them into valuable ore reserves. The bioleaching potential of several bacteria (Bacillus circulans, Bacillus licheniformis, Bacillus mucilaginosus, Sporosarcina ureae) and fungi (Aspergillus niger, Humicola grisea, Penicillium chrysogenum) towards the alteration of chemical, mineralogical and morphological properties of pure alkaline materials (wollastonite and olivine) and alkaline waste residues (AOD and BOF steel slags, and MSWI boiler fly ash) at natural pH (neutral to basic) was assessed. Bioleaching was conducted using one-step and two-step methodologies. Increased solubilisation of alkaline earth metals and nickel were verified. Alteration in basicity was accompanied by alteration of mineralogy. AOD slag experienced solubilisation-precipitation mechanism, as evidenced by the decline of primary phases (such as dicalcium-silicate, bredigite and periclase) and the augmentation of secondary phases (e.g. merwinite and calcite). Nickel-bearing minerals of olivine (clinochlore, lizardite, nimite and willemseite) significantly diminished in quantity after bioleaching. Altered mineralogy resulted in morphological changes of the solid materials and, in particular, in increased specific surface areas. The bioleaching effect can be attributed to the production of organic acids (principally gluconic acid) and exopolysaccharides (EPS) by the microorganisms. The similarities between fungal and bacterial mediated bioleaching suggest that biogenic substances contribute mostly to its effects, as opposed to bioaccumulation or other direct action of living cells.

Comments

5 August 2016: At the time of publication, Sheridan College author Rafael M. Santos was associated with the Katholieke Universiteit Leuven in Belgium.

Faculty

Faculty of Applied Science & Technology

School

School of Chemical and Environmental Sciences

Journal

Minerals Engineering

Version

Pre-print

Peer Reviewed/Refereed Publication

yes

Terms of Use

Terms of Use for Works posted in SOURCE.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Original Publication Citation

Chiang, Y.W., Santos, R.M., Monballiu, A., Ghyselbrecht, K., Martens, J.A., Mattos, M.L.T., Van Gerven, T., Meesschaert, B. (2013). Effects of Bioleaching on the Chemical, Mineralogical and Morphological Properties of Natural and Waste-Derived Alkaline Materials. Minerals Engineering, 48, 116-125. http://dx.doi.org/10.1016/j.mineng.2012.09.004

Share

COinS